期刊文献+

基于药物靶点从传统中药库中高通量虚拟筛选HIV-1整合酶抑制剂 被引量:6

High-flux Virtual Screening of HIV-1 Intergrase Inhibitors from TCMSP Based on Drug Target
原文传递
导出
摘要 目的:运用虚拟筛选技术从传统中药数据库(traditional Chinese medicine database platform,TCMSP)中寻找HIV-1整合酶的中药小分子抑制剂。方法:以整合酶与细胞因子LEDGF/P75相互作用位点为靶点,运用分子对接技术进行首轮筛选,然后运用ADME/T预测进行第二轮筛选,最后基于靶点与药物相互作用位点进行第三轮筛选。结果:以原配体(4-[(5-bromo-4-{[2,4-dioxo-3-(2-oxo-2-phenylethyl)-1,3-thiazolidin-5-ylidene]methyl}-2-ethoxyphenoxy)-methyl]-benzoic acid,D77)为阳性对照,筛选出2个类药性良好的天然小分子化合物,二者与HIV-1整合酶亲和力及相互作用基团均优于D77(新型的HIV-1整合酶抑制剂),并且确定了它们的中草药来源。结论:成功建立一整套高通量虚拟筛选HIV-1整合酶抑制剂的策略,该研究结果可促进从传统中药库中提取、设计以及实验合成新的抗艾滋病药物。 Objective: To search small molecule inhibitors for HIV-1 intergrase from traditional Chinese medicine database platform( TCMSP) by using the virtual screening technology. Method: The interacting site between HIV-1 intergrase andcytokine LEDGF / P75 were taken as target. The molecular docking technology was used for the first round of screening,then the ADME / T prediction was adopted for the second round of screening,and finally the target point andthe interacting site were based for the third round of screening. Result: The free binding energy of original ligand( 4-[( 5-bromo-4-{ [2, 4-dioxo-3-( 2-oxo-2-phenylethyl)-1, 3-thiazolidin-5-ylidene]methyl}-2-ethoxyphenoxy)-methyl]-benzoic acid,D77) was be used as positive control to screen out two natural micro-molecule compounds with good drug likeness. Thenatural micro-molecule compounds, HIV-1intergraseandinteractive perssad showed a superioraffinity to D77( a new-typeintergrase inhibitor). Their sources of traditional Chinese medicine were determined. Conclusion: This study successfully established a high-throughput virtual screening strategy for HIV-1 intergrase inhibitors,and provides an important reference and theoretical basis for the extraction of anti-AIDS compounds from Chinese herbal medicine and the design of anti-AIDS drugs.
出处 《中国实验方剂学杂志》 CAS CSCD 北大核心 2016年第19期159-164,共6页 Chinese Journal of Experimental Traditional Medical Formulae
基金 国家自然科学基金项目(81473782) 国家级大学生创新创业训练计划项目(201510716494)
关键词 HIV-1整合酶抑制剂 虚拟筛选 小分子抑制剂 HIV-1 intergrase inhibitor virtual screening small molecule inhibitor
  • 相关文献

参考文献14

  • 1Cane P A,Johnson A P. New developments in HIV drug resistance [ J ]. J Anti microb Chemother, 2009, 64 ( suppl 1 ) : i37-i40.
  • 2Johnson M O,Charlebois E, Morin S F,et al. Perceived adverse effects of antiretroviral therapy [ J ]. J Pain Symptom Manage, 2005,29 ( 2 ) : 193-205.
  • 3Lutzke R A, Plasterk R H. HIV intergrase:a target for drug discovery [ J 3. Genes Fnnet, 1997, 1 (5/6) : 289-307.
  • 4Nair V. HIV intergrase as a target for antiviral chemotherapy [ J]. Rev Med Virol, 2002, 12 (3): 179-193.
  • 5Hare S, Gupta S S, Valkov E, et al. Retroviral intasome assembly and inhibition of DNA strand transfer [ J l- Nature ,2010,464 ( 7286 ) :232-236.
  • 6Meneely M,Hendrix J,Bnsschots K,et al. In vitro DNA tethering of HIV-1 integrase by the transcriptional coactivator LEDGF/p75 [ J]. J Mol Biol, 2011,410 (5) :811-830.
  • 7Hu G,Li X, Sun X, et al. Identification of old drugs as.potential inhibitors af HIV-1 integrase-human LEDGF/ p75 interaction via molecular docking [ J]. J Mol Model ,2012,18 ( 12 ) :4995 -5003.
  • 8Ru J L, Li P, Wang J, et al. TCMSP:a database of systems pharmacology for drug discovery from herbal medicines [ J]. J Cheminformatics,2014, 6 : 13.
  • 9Du L, Zhao Y, Chen J, et al. D77, one benzoic acid derivative, functions as a novel anti-HIV-1 inhibitor targeting the interaction between integrase and cellular LEDGF/p75 [ J]. Biochem Biophys Res Common,2008, 375 ( 1 ) : 139-144.
  • 10Gohlke I-I, Hendlich M, Kelbe G. Knowledge based scoring function to predict protein ligand interactions [J3- J Mol Biol,2000,295(37) :337-356.

二级参考文献10

  • 1宋必卫,王文喜,牛泱平.促进药物跨血脑屏障转运载体的研究进展[J].中国药理学通报,2005,21(10):1167-1170. 被引量:5
  • 2李燕,王永华,杨凌,张述伟,蒋达,刘长厚,杨胜利.黄酮衍生物作为P糖蛋白抑制剂的构效关系研究[J].大连理工大学学报,2007,47(1):15-20. 被引量:5
  • 3CLARK D E.In silico prediction of blood-brain barrier permeation[J].Drug Discov Today,2003,8(20):927-933.
  • 4KAZNESSIS Y N,SNOW M E,BLANKLEY C J.Prediction of blood-brain partitioning using Monte Carlo simulations of molecules in water[J].J Comput Aid Mol Des,2001,15(8):697-708.
  • 5IYER M,MISHRA R,HAN L,et al.Predicting blood-brain barrier partitioning of organic molecules using membrane-interaction QSAR analysis[J].Pharm Res,2002,11(19):1611-1621.
  • 6LIU Rui-feng,SUN Hong-mao,SO S S.Development of quantitative structure-property relationship models for early ADME evaluation in drug discovery.2.Blood-brain barrier pentration[J].J Chem Inf Comput Sci,2001,41(6):1623-1632.
  • 7WINKLER D A,BURDEN F R.Modelling bloodbrain barrier partitioning using Bayesian neural nets[J].J Mol Graph Model,2004,22(6):499-505.
  • 8NARAYANAN R,GUNTURI S B.In silico ADME modeling:prediction models for blood-brain barrier permeation using a systematic variable selection method[J].Bioorg Med Chem,2005,13(8):3017 -3028.
  • 9WANG Yong-hua,LI Yan,LI Yan-hong,et al.Modeling Km values electrotopological state:substrates for cytochrome P450 3A4-mediated metabolism[J].Bioorg Med Chem Lett,2005,15(18):4076-4084.
  • 10GARG P,VERMA J.In silico prediction of blood brain barrier permeability:an artificial neural network model[J].J Chem Inf Model,2006,46 (11):289 -297.

共引文献4

同被引文献119

引证文献6

二级引证文献446

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部