期刊文献+

基于酉变换-矩阵束的稀布线阵方向图综合 被引量:4

Sparse Array Pattern Synthesis Using Unitary Transformation Matrix Pencil Method
下载PDF
导出
摘要 该文提出一种非迭代的稀布线阵方向图综合方法。该方法首先对方向图采样数据进行centro-Hermit化处理,然后通过酉变换构造等价实矩阵束,得到非均匀单元位置与新矩阵束广义特征值的关系。在此基础上,对实矩阵奇异值分解,并舍弃非主要奇异值以获得低阶左奇异向量矩阵,进而求得稀布阵列的阵元位置和相应激励。相比于其他方法,该方法能够直接得到阵元位置的实数解,奇异值分解和特征值分解均在实数域进行,提高逼近程度的同时有效降低了计算量,仿真验证了该方法利用少量阵元即可高效实现线阵的方向图综合。 A novel non-iterative method, named unitary matrix pencil method, is presented in this paper for the pattern synthesis of sparse linear arrays. Through unitary transformation of the centro-Hermit matrix constructed using sample data of the desired pattern, an equivalent real-valued matrix pencil can be achieved so as to determine the relation between non-uniform element positions and new generalized eigenvalues. Then, the lower order left singular vector matrix can be obtained by discarding the non-principal singular values generated by Singular Value Decomposition (SVD) of the real-valued matrix. The element positions and excitations are thereby estimated efficiently. Compared with other algorithms, this method can be utilized to directly obtain the real-valued solution of sparse array locations. Furthermore, Singular Value Decomposition (SVD) and Eigen Value Decomposition (EVD) are computed in the real-valued field with a lower computational cost. Simulation results validate the high-efficiency of the proposed synthesis method for the design of arbitrary linear array pattern with a fewer number of antenna elements.
出处 《电子与信息学报》 EI CSCD 北大核心 2016年第10期2667-2673,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61172148)~~
关键词 稀疏布阵 Centro-Hermit矩阵 酉变换 矩阵束 方向图综合 Sparse array Centro-Hermit matrix Unitary transformation Matrix Pencil Method (MPM) Pattern synthesis
  • 相关文献

参考文献19

  • 1ZHAO X W, YANG Q S, and ZHANG Y H. Compressed sensing approach for pattern synthesis of maximally sparse non-uniform linear array[J]. IET Microwaves, Antennas Propagation, 2014, 8(5): 301-307.
  • 2WANG X R, ABOUTANIOS E, and AMIN M G. Thinned array beampattern synthesis by iterative soft-threshold-based optimization algorithms[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(12): 6102-6113.
  • 3SARTORI D, MANICA L, OLIVERI G, et al. Design of thinned arrays with controlled sidelobes by ADS-CP strategy [C]. 8th European Conference on Antennas and Propagation (EuCAP2014), Hague, Netherlands, 2014: 1-17.
  • 4PINCHERA D and MIGLIORE M D. Effective sparse array synthesis using a generalized alternate projection algorithm [C]. IEEE Conference on Antenna Measurements &: Applications, Antibes, France, 2014: 16:19.
  • 5杨鹏,闫飞,张胜辉,杨峰.基于FOCUSS算法的稀疏阵列综合[J].电子科技大学学报,2014,43(2):203-206. 被引量:9
  • 6ANGELETTI P, TOSO G, and RUGGERINI G. Sparse array antennas with optimized elements positions and dimensions[C]. 8th European Conference on Antennas and Propagation (EuCAP2014), Hague, Netherlands, 2014: 3142-3145.
  • 7贾维敏,林志强,姚敏立,赵鹏,赵建勋.一种多约束稀布线阵的天线综合方法[J].电子学报,2013,41(5):926-930. 被引量:14
  • 8OLIVERI G and MASSA A. Bayesian compressive sampling for pattern synthesis with maximally sparse non-uniform linear arrays[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(2): 467-481.
  • 9OLIVERI G, CARLIN M, and MASSA A. Complex-weight sparse linear array synthesis by Bayesian compressive sampling[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(5): 2309-2326.
  • 10LIU Y H, NIE Z P, and LIU Q H. Reducing the number of elements in a linear antenna array by the matrix pencil method[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(9): 2955-2962.

二级参考文献23

  • 1王玲玲,方大纲.运用遗传算法综合稀疏阵列[J].电子学报,2003,31(z1):2135-2138. 被引量:54
  • 2陈客松,何子述,韩春林.非均匀线天线阵优化布阵研究[J].电子学报,2006,34(12):2263-2267. 被引量:23
  • 3Skolnik M I,Nemhauser G.,Sherman J W.Dynamic programming applied to unequally spaced arrays[J].IEEE Transactions on Antennas and Propagation,1964,12(1):35-43.
  • 4Kumar B P,Branner G R.Design of unequally spaced arrays for performance improvement[J].IEEE Transactions on Antennas and Propagation,1999,47(3):511-523.
  • 5Murino V,Trucco A,Regazzoni C S.Synthesis of unequally spaced arrays by simulated annealing[J].IEEE Transactions on Signal Processing,1996,44(1):119-123.
  • 6Hooker J W,Arora R K.Optimal thinning levels in linear arrays[J].IEEE Antennnas and Wireless Propagation Letters,2010,9:771-774.
  • 7Chen Ke-song,He Zi-shu,Han Chun-lin.A modified real GA for the sparse linear array synthesis with multiple constraints[J].IEEE Transactions on Antennas and Phopagation,2006,54(7):2169-2173.
  • 8Haupt R L.Thinned arrays using genetic algorithms[J].IEEE Transactions on Antennas and Propagation,1994,42(7):993-999.
  • 9Cen L,Ser W,Yu Z L,Rahardja S.An improved genetic algorithm for aperiodic array synthesis[A].Proc IEEE International Conference on Acoustics,Speech and Signal Processing[C].Las Vegas,NV:IEEE Press,2008.2465-2468.
  • 10Lommi A,Massa A,Storti E,Trucco A.Sidelobe reduction in sparse linear arrays by genetic algorithms[J].Microwave and Optical Technology Letters,2002,31(3):194-196.

共引文献21

同被引文献16

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部