期刊文献+

基于噪声方差估计的高斯混合概率假设密度滤波算法 被引量:5

Gaussian Mixture PHD Filter Based on Noise Covariance Estimation
下载PDF
导出
摘要 针对传统的高斯混合概率假设密度(GM-PHD)滤波器在噪声先验特性未知或不准确时跟踪性能会下降,提出了一种基于噪声方差估计的高斯混合概率假设密度(NCE-GM-PHD)滤波算法.该算法可以同时在线估计时变的目标个数、多目标状态以及噪声方差.首先,通过引入遗忘因子和采取有偏估计的方法改进了传统的Sage-Husa自适应滤波器.基于改进的自适应滤波器,推导了带噪声方差估计的GM-PHD滤波算法.仿真结果表明,在非时变或时变量测噪声方差未知的情况下,NCE-GM-PHD算法的跟踪性能优于传统的GM-PHD算法,对噪声变化的适应能力更强. When the prior noise statistics was unknown or inaccurate, the conventional Gaussian mixture probability hypothesis density (GM-PHD) filter declined in tracking performance. To solve this problem, a noise covariance estimation based GM-PHD (NCE-GM-PHD) filter was proposed for jointly estimating the time-varying number of targets, multi-target states and noise covariance. First, the adaptive filter of Sage and Husa was modified by introducing a forgetting factor and using the biased estimation. Based on the modified adaptive filter, the noise estimation method was adopted to derive a closed-form solution for NCE-GM-PHD filter. Simulation results demonstrate that the NCE-GM-PHD filter has a favorable per- formance and adaptability of noise changes compared to the classical GM-PHD filter with unknown time-in- variant or time-varying measurement noise statistics.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2016年第9期1355-1361,共7页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金资助项目(61175028)
关键词 高斯混合概率假设密度滤波器 多目标跟踪 噪声方差估计 自适应滤波器 Gaussian mixture probability hypothesis density (GM-PHD) filter multi-target tracking noise covariance estimation adaptive filter
  • 相关文献

参考文献14

  • 1王震,敬忠良,雷明,秦彦源,董鹏.基于PHD的多扩展目标联合检测、跟踪与分类算法[J].上海交通大学学报,2015,49(11):1589-1596. 被引量:4
  • 2WU Jingjing, HU Shiqiang, WANG Yang. Adaptive multifeature visual tracking in a probability hypothe- sis density filtering framework [J]. Signal Processing, 2013, 93(11): 2915-2926.
  • 3VASIC M, MARTINOLI A. A collaborative sensor fusion algorithm for multi-object tracking using a Gaussian mixture probability hypothesis density filter [C]//Proceedings of the 18th International Conference on Intelligent Transportation Systems. Las Palmas: IEEE, 2015: 491-498.
  • 4PETETIN Y, MORELANDE M, Desbouvries F. Marginalized particle PHD filters for multiple object Bayesian filtering [J]. IEEE Transactions on Aero- space Electron System, 2014, 50(2) : 1182-1196.
  • 5郝燕玲,孟凡彬,王素鑫,孙枫.一种新的多机动目标跟踪的GMPHD滤波算法[J].上海交通大学学报,2010,44(7):873-877. 被引量:7
  • 6VO B N, MAW K. The Gaussian mixture probabili- ty hypothesis density filter [J]. IEEE Transactions on Signal Process, 2006, 54(11): 4091-4104.
  • 7SMITH G L. Sequential estimation of observation er- ror variance in a trajectory estimation problem [J]. AIAA Journal, 1964, 5(11): 1964-1970.
  • 8SAGE A P, HUSA G W. Adaptive filtering with un- known prior statistics [C]// Proceedings of Joint Au- tomatic Control Conference. Boulder Colorado: IEEE, 1969 : 760-769.
  • 9NARASIMHAPPA M, RANGABABU P, SABAT S L, et al. A modified Sage-Husa adaptive Kalman fil- ter for denoising Fiber Optic Gyroscope signal [C]//// Proceedings of IEEE INDICON. Kochi: IEEE, 2012 : 1266-1271.
  • 10GAO Wei, LI Jingchun, ZHOU Guangtao, etal. A- daptive Kalman filtering with recursive noise estima- tor for integrated SINS/DVL systems [J]. Journal of Navigation, 2015, 68(1) : 142-161.

二级参考文献28

  • 1胡洪涛,敬忠良,李安平,胡士强.非高斯条件下基于粒子滤波的目标跟踪[J].上海交通大学学报,2004,38(12):1996-1999. 被引量:54
  • 2陈良洲,施文康.时间序列分析的随机集方法[J].上海交通大学学报,2005,39(3):400-404. 被引量:6
  • 3Goodman I R, Mahler R, Nguyen H. Mathematics of data fusion [M].Boston: Kluwer Academic, 1997.
  • 4Hoffmann C, Dang T. Cheap joint probabilistic data association filters in an interacting multiple model design[J]. Robotics and Autonomous Systems, 2009, 57(1) : 268-278.
  • 5Mahler R. Statistical multisource multitarget information fusion [M].Boston:Artech House, 2007.
  • 6Michanil N P. Maneuvering target tracking using multiple bistatic range and range-rate measurements [J]. Signal Processing, 2007, 87(7): 665-686.
  • 7Li X R, Jilkov V P. A survey of maneuvering target tracking, Part V: Multiple model methods [J].IEEE Trans on Aerospace and Electronic Systems, 2005, 41(4) : 1255-1321.
  • 8Vo B N, Singh S. On the Bayes filtering equations of finite set statistics [C]//Proeeedings of the 5th Asian Control Conference. Melbourhe, Australia: [ s. n. ], 2004: 1273-1278.
  • 9Mahler R. Multitarget bayes filtering via first-order multitarget moments [J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39 (4): 1152- 1178.
  • 10Vo B N, Ma W K. The Gaussian mixture probability hypothesis density filter [J]. IEEE Transactions on Signal Proeessing, 2006, 54(11): 4091-4104.

共引文献13

同被引文献29

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部