期刊文献+

用支持向量回归法实现单帧图像超分辨率重建 被引量:9

Single image super-resolution reconstruction using support vector regression
下载PDF
导出
摘要 由于一些传统的超分辨率重建算法学习多幅不同类别的图像仍无法获得好的重建效果,本文提出了一种基于支持向量回归机和光栅扫描的单帧图像超分辨率重建算法。该算法首先采用光栅扫描法对一组高低分辨率训练图像提取图像块,从块中分别抽取输入向量和标签像素。利用Log算子判断这些块是属于高频空间还是低频空间,从而构建高低频空间向量对并对其进行优化。然后,用支持向量回归机(SVR)工具训练优化后的向量对,得到高低频空间下的两个字典;抽取测试低分辨率图像中的块并得到高低频空间下的输入向量,利用SVR工具回归对应的属于超分辨率图像块的标签像素并得到回归后的图像。最后,对图像进行后处理得到最终的超分辨率图像。与其它算法的对比实验表明:提出的算法具有较好的视觉效果。特别在放大倍数为2时,提出的算法在不同图像上的峰值信噪比(PSNR)和结构相似度(SSIM)值较双三次插值法分别提高了3.1%~5.3%和1.5%~8.1%。得到的结果显示提出的算法获得了更好的重建效果。 Some of the traditional single-frame super-resolution(SR)reconstruction algorithms can not get good reconstruction results,although they learns many different types of images.Therefore,a super-resolution method combined with the Support Vector Regression(SVR)and raster-scan actions was proposed.Firstly,image patches were extracted from a group of high resolution(HR)images and the corresponding low resolution(LR)edition by the raster-scan actions,and input vectors and pixel vectors were taken out from the patches.The Log algorithm was used to determine that those patches were belong to high-frequency space or low frequency space then to construct the high and low frequency vector pairs.Then,those optimized vector pairs were trained by the SVR and two dictionaries in high/low frequency spaces were built eventually.Furthermore,input vectors were extracted from tested LR images in high/low frequency space,and the SVR tool was used to predict the SR pixel labels and the predicted pixels were added to bicubic interpolation image based on LRedition.Finally,the SR image was obtained by post-processing the previous image.In comparison with other algorithms,experimental results indicate that the proposed method provides good visual effects.It enhances its Peak Signal-to-Noise Ration(PSNR)and Structural Similarity Index Measurement(SSIM)by 3.1%-5.3% and 1.5%-8.1% on different images,respectively as compared with bicubic interpolation method.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2016年第9期2302-2309,共8页 Optics and Precision Engineering
基金 天津市应用基础与前沿技术研究计划青年基金资助项目(No.14JCQNJC00900)
关键词 超分辨率重建 单帧图像 支持向量回归机 LOG算子 光栅扫描 super-resolution reconstruction single image support vector regression Log algorithm raster-scan
  • 相关文献

参考文献21

二级参考文献113

  • 1汪雪林,赵书斌,彭思龙.基于小波域隐马尔可夫树模型的图像复原[J].计算机学报,2005,28(6):1006-1012. 被引量:22
  • 2顾行发,李小英,闵祥军,余涛,孙吉娟,曾湧,许华,郭丁,无.CBERS-02卫星CCD相机MTF在轨测量及图像MTF补偿[J].中国科学(E辑),2005,35(B12):26-40. 被引量:32
  • 3刘贵喜,陈文锦,杨万海.融合参数对对比度塔形分解图像融合方法性能的影响研究[J].电路与系统学报,2006,11(1):39-45. 被引量:6
  • 4PARK S C, PARK M K, KANG M G.Super-resolution image reconstruction:a technical overview[J].IEEE Signal Processing Magazine, 2003, 20(3):21-36.
  • 5FREEMAN W, PASZTOR E, CARMICHAEL O.Learning low-level vision [J].International Journal of Compute Vision, 2000, 40(1):25-47.
  • 6CHANG H, YEUNG D, XIONG Y M.Super-resolution through neighbor embedding [C].Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004, 1:275-282.
  • 7YANG J, WRIGHT J, HUANG T, et al..Image super-resolution via sparse representation [J].IEEE Trans.Image Process, 2010, 19(11):2861-2873.
  • 8YANG S Y, WANG M, CHEN Y, et al..Single-image super-resolution reconstruction via learned geometric dictionaries and clustered sparse coding [J].IEEE Trans.Image Processing, 2012, 21(9):4016-4028.
  • 9DONG W, ZHANG L, SHI G, et al..Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization [J].IEEE Trans.Image Process, 2011, 20(7):1838-1857.
  • 10LU X, YUAN Y, YAN P.Image super-resolution via double sparsity regularized manifold learning [J].IEEE Trans.Circuits and Systems for Video Technology, 2013, (99).

共引文献84

同被引文献72

引证文献9

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部