期刊文献+

基于矩阵的关联规则增量更新及其改进算法 被引量:8

Matrix-based association rule incremental updating and its improved algorithm
原文传递
导出
摘要 为了解决大数据环境下如何高效地挖掘关联规则并进行增量更新,在原有的fast updating pruning(FUP)算法基础上,首先提出一种基于矩阵的关联规则增量更新方法(MFUP),该方法将数据集转化成布尔矩阵,减少对数据集的扫描次数以及数据集的存储量;然后将MFUP与Hadoop分布式计算框架结合,提出一种分布式环境下的新算法Cloud MFUP(CMFUP);最后通过设计实验进行对比分析。结果表明,在挖掘相同数据量的关联规则并进行增量更新时,MFUP算法相比FUP算法执行时间更少,且随着数据集的增加,其增速更慢;对比CMFUP与MRFUP算法表明,随着分布式环境下数据集的增加,前者较后者执行时间更短增速更慢。 In an attempt to efficiently mine association rules and update increments for the case of big data,we first discuss a series of improved algorithms based on the fast updating pruning( FUP) algorithm,and then propose a new matrix FUP( MFUP) algorithm based on association rules and incremental updating of matrices.The proposed method reduces the scan times of datasets by transforming the datasets to a Boolean matrix,and the storage space required is also decreased by using the Boolean matrix.An experimental study of incremental updating of frequent items verified that the time required by the MFUP algorithm is less than that for the FUP algorithm when mining association rules and updating increments for the same amount of data.In addition,as the number of datasets increases,the rate of increase of the time required is slower in the case of the MFUP algorithm.A second experiment indicated that the time required by the two algorithms decreased as the support degree increased.Furthermore,by introducing the Hadoop platform into the MFUP algorithm when updating the matrix of incremental datasets,an improved cloud MFUP( CMFUP) algorithm based on a distributed computing environment has been proposed.When increasing the number of datasets in the distributed computing environment,the time required by the CMFUP algorithm is less than that of the map reduce FUP( MRFUP) algorithm,and the rate of increase of the time required is also slower.In addition,as the number of cluster datanodes increases,the time required decreases.
作者 耿志强 张杨 韩永明 GENG ZhiQiang ZHANG Yang HAN YongMing(College of Information Science and Technology Engineering Research Center of Intelligent PSE, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China)
出处 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第5期89-94,共6页 Journal of Beijing University of Chemical Technology(Natural Science Edition)
基金 国家自然基金(61374166) 北京市自然科学基金(4162045) 教育部博士点基金(20120010110010) 中央高校基本科研业务费(JD1502)
关键词 FAST updating pruning(FUP)算法 关联规则 增量更新 HADOOP平台 布尔矩阵 fast updating pruning(FUP) association rule incremental updating Hadoop Boolean matrix
  • 相关文献

参考文献7

二级参考文献53

  • 1朱红蕾,李明.一种高效维护关联规则的增量算法[J].计算机应用研究,2004,21(9):107-109. 被引量:9
  • 2付长贺,赵传立,唐恒永.一种改进的关联规则增量式更新算法[J].沈阳师范大学学报(自然科学版),2006,24(1):51-54. 被引量:2
  • 3刘以安,羊斌.关联规则挖掘中对Apriori算法的一种改进研究[J].计算机应用,2007,27(2):418-420. 被引量:53
  • 4余小鹏.一种基于多层关联规则的推荐算法研究[J].计算机应用,2007,27(6):1392-1393. 被引量:7
  • 5[1]Agrawal R. Mining Association Rules Between Sets of Items in Large Database. Washington, DC:Proceedings of ACM SIGMOD Conference on Management of Data, 1993-05:207-216
  • 6[2]Agrawal R, Srikant R. Fast Algorithms for Mining Association Rules.Santiago, Chile: Proceedings of the 20th International Conference on Very Large Databases, 1994-09:487-499
  • 7[3]Cheung D W. Maintenance of Discovered Association Rules in Large Databases:An Incremental Updating Technique. New Orleans,Louisana:Proceedings of the 12th International Conference on Data Engineering,1996:106-114
  • 8[1]Agrawal R.Mining assoeiation rules between sets of items in large databases[C].In:Proceedings of ACM SIGMOD Conference on Management of Data,Washington,DC,/~kjqk, 1993-05: 207~216
  • 9[2]Agrawal R,Srikant R.Fast algorithms for mining association rules[C].In :Proceedings of the 20th International Conference on Very Large Databases, Santiago, Chinle, http://sinakdd. 163 .net/main .htm, 1994-09:487~499
  • 10[3]Srikant R,Agrawal R.Mining generalized association rules[C].In:Proceedings of the 21st International Conference on Very Large Databases,Zurich, Switzerland, 1994-09: 407~419

共引文献74

同被引文献81

引证文献8

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部