期刊文献+

面向零售业的关联规则挖掘的研究与实现 被引量:2

Research and Realization of Association Rules Mining in Supermarket
下载PDF
导出
摘要 随着零售业在城市的快速发展,智能系统积累了大量的零售业原始数据,急需一种技术来发现数据中蕴含的内在规则,为企业管理者提供决策支持。数据挖掘是目前一个重要的研究方向,可以把日常业务数据知识化。介绍了零售业商务智能系统的发展现状,并通过分析零售业数据来掌握顾客的购买偏好,并同时对挖掘结果进行说明,在一定程度上利用关联规则技术解决现实中的商业问题。针对数量和利润的因素,提出利用频繁项目集寻找商品利润最大化的销售组合模型,零售商可以根据该模型输出的销售组合模型对商品进行捆绑销售,以获得最大利润。提出来竞争商品的概念,即找出隐含在数据库中相互竞争商品的模型,这样就得到了零售业商品推荐模型。实验结果表明,提出的模型能找出高交叉销售利润的商品,在零售业中有很好的实用性。 With the rapid development of supermarket, a lot of business data are accumulated by intelligent system. It' s imperative and necessary to find an effective technique to explore and discover the potential knowledge from the enormous amount of data, which is helpful for business decision making. Data mining has an important research role in the world. It can be used to acquire the knowledge. The current situation of supermarket development is analyzed,and the customer' s buying behavior is understood through the analysis of the retail sales data, making the explanation to the mining result, application of association rules to solve real business problems. According to the factors of the quantity and profit, the frequent item sets are adopted to find the sales combination model of profit maximization of commodity, and retailers can use it to bundling and gain the biggest profit. Based on the concept of competitive products, a model is pro- posed that can be used to find out the hidden in the retail database by the frequent and non-frequent items, getting the model of retail commodity recommendation. The experiment shows that the model can find out the high cross selling goods with good practicality in supermarkets.
出处 《计算机技术与发展》 2016年第10期146-150,共5页 Computer Technology and Development
基金 陕西省自然基金资助项目(2003JM8005) 榆林市科技局资助项目(NY13-15) 榆林学院青年科技基本资助项目(14YK37)
关键词 数据挖掘 关联规则 零售业商务智能系统 APRIORI算法 data mining association rules retail business intelligence system Apriori algorithm
  • 相关文献

参考文献13

  • 1HanJW,KamberMi.范明,盂小峰译.数据挖掘概念与技术[M].北京:机械工业出版社,2006.
  • 2亓文娟,晏杰.关联规则挖掘在超市中的应用研究[J].吉林师范大学学报(自然科学版),2013,34(2):138-141. 被引量:4
  • 3陈莉,焦李成.文档挖掘与降维技术[J].西北大学学报(自然科学版),2003,33(3):267-271. 被引量:13
  • 4李颖基,彭宏,郑启伦,曾炜.Web日志中有趣关联规则的发现[J].计算机研究与发展,2003,40(3):435-439. 被引量:20
  • 5卜耀华.关联规则挖掘技术在零售业中的应用[J].商场现代化,2009(10):97-98. 被引量:1
  • 6张小利,陈莉.数据挖掘在智能交通系统中的应用[J].西北大学学报(自然科学版),2005,35(6):687-690. 被引量:11
  • 7Heravi M J, Zaiane O R. A study on interesting measures for associative classifiers [ C ]//Proceedings of the 2010 ACM symposium on applied computing. Sierre: ACM ,2010 : 1039- 1046.
  • 8Ting S L,Tse Y K,Ho G T S,et al. Mining logistics data to assure the quality in a sustainable food supply chain: a case in the red wine industry[ J]. International Journal of Production Economics ,2013,152:200-209.
  • 9Liao Shu-Hsien, Chu Peihui, Hsiao Pei-Yuan. Data mining techniques and applications - a decade review from 2000 to 2011 [J]. Expert Systems with Applications,2012,39:l1303 -11311.
  • 10Rong Jia, Vu H Q, Law R, et al. A behavioral analysis of web sharers and browsers in Hong Kong using targeted association rule mining [ J ]. Tourism Management, 2011,33 ( 4 ) : 731 - 740.

二级参考文献26

  • 1张海勤,邹翔,洪流,蔡庆生.电力调度数据挖掘系统的设计与实现[J].小型微型计算机系统,2003,24(1):64-67. 被引量:2
  • 2李芳,朱群雄.关联规则挖掘在苯酐生产中的应用[J].华东理工大学学报(社会科学版),2002,17(S1):88-90. 被引量:4
  • 3李元金,杨连贺.数据挖掘技术在汽车保险业中的应用[J].仪器仪表用户,2005,12(3):80-81. 被引量:4
  • 4LAM W, RUIZ M, SRINIVASAN P. Automatic text categorization and application to text retrieval [J].IEEE Trans on Knowledge and Data Engineering, 1999,11(6) :865-879.
  • 5CHEN M Y, HAN J W, YU S Y. Data mining an overview from a database perspective [J]. IEEE Trans Knowledge and Data Engineering, 1996, 18(6) :866-883.
  • 6USAMA M F. Data mining and knowledge discovery : making sense out of data [J]. IEEE Expert, 1996, 11 (5):20-25.
  • 7APTE C ,DAMERA F ,WEISS S M. Automated learning of decision rules for text categorization[J]. ACM Trans Information System, 1994,12(3): 233-251.
  • 8KESARAPORN T, AMITAVA D. Visual Mining of Market Basket Association Rules [J]. Lecture Notes in Computer Science, 2004, 30(4):14-17.
  • 9THOMSENE.Microsoft OLAP解决方案[M].北京:人民邮电出版社,2000..
  • 10AGRAWAL R, SRIKANT R. Fast algorithms for mining association nlles [A]. Proceedings of the 20th International Conference on Very Large Databases [C]. Santiago: Morgan Kaufmann, 1994. 487-499.

共引文献56

同被引文献8

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部