期刊文献+

核壳结构催化剂应用于质子交换膜燃料电池氧还原的研究进展 被引量:12

Core-Shell Structured Electrocatalysts for the Cathodic Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells
下载PDF
导出
摘要 质子交换膜燃料电池(PEMF Cs)由于高比功率密度、高能量转换效率、环境友好和低温下快速启动等优点受到广泛关注,被认为是替代传统内燃机成为汽车动力的最理想能源转换装置。目前PEMF Cs仍需较高载量的贵金属Pt作为电催化剂以保持转换效率,因此,开发低Pt量高活性的电催化剂对PEMF Cs技术的商业化进程至关重要。核壳结构催化剂被证明是一种能有效降低电极Pt用量的策略,其既能通过结构优势提高贵金属Pt的利用率,又能通过电子或几何效应改善催化剂的催化活性和稳定性。本文首先简介了PEMF Cs阴极氧还原反应(ORR)电催化剂构效关系的理论研究;其次综述了几种典型核壳结构电催化剂应用于ORR的研究进展;最后对ORR低Pt电催化剂的下一步研究方向作了展望。 Proton exchange membrane fuel cells (PEMFCs) are considered as ideal alternative power devices to traditional internal combustion engines for automobile applications because of their high electric power density, high energy conversion efficiency, and low environmental impact as well as low temperatures for start-up and operation. However, PEMFCs normally require a high loading of the expensive precious metal platinum (Pt) as the electrocatalytic material to maintain desirable energy output. Thus, the development of novel catalysts with lower Pt loading, enhanced activity, and improved durability is vital for the scalable commercialization of PEMFC technology. In this regard, core-shell structure has been demonstrated as an effective strategy to minimize the amount of Pt in PEMFCs because of the following two factors:(1) a core-shell architecture with a Pt-rich shell and M-rich (M represents an earth-abundant element) core can greatly improve the utilization of Pt; (2) the activity and stability of Pt on the surface can be greatly enhanced by strain (geometry) and electronic (alloying) effects caused by the M in the core. First, we briefly discuss the structure-performance relationship of typical core-shell structured electrocatalysts for the oxygen reduction reaction (ORR). Then, we review the development of Pt-based core-shell structured catalysts for the ORR. Finally, a perspective on this research topic is provided.
作者 朱红 骆明川 蔡业政 孙照楠 ZHU Hong LUO Ming-Chuan CAI Ye-Zheng SUN Zhao-Nan(State Key Laboratory of Chemical Resource Engineering, School of Science, Beijing University of Chemical Technology, Beijing 100029, P. R. China)
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2016年第10期2462-2474,共13页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(21376022) 国际合作项目(2013DFA51860)资助~~
关键词 质子交换膜燃料电池 氧还原反应 低Pt催化剂 核壳结构 电子/几何效应 Proton exchange membrane fuel cell Oxygen reduction reaction Low-platinum catalyst Core-shell structure Electronic/geometric effect
  • 相关文献

参考文献122

  • 1Gates, B. Science 2011, 334, 877. doi: 10.1126/science.1216290.
  • 2Debe, M. K. Nature 2012, 486, 43. doi: 10.1038/nature11115.
  • 3Larminie, J. 可再生能源开发技术. 朱红, 译. 北京: 科学出版社, 2003:25-53.
  • 4Hammer, B.; Norskov, J. K. Nature 1995, 376, 238. doi: 10.1038/378376a0.
  • 5Mavrikakis, M.; Stoltze, P.; Norskov, J. K. Catal. Lett. 2000, 64, 101. doi: 10.1023/A:1019028229377.
  • 6N?rskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. J. Phys. Chem. B 2004, 108, 17886. doi: 10.1021/jp047349j.
  • 7Stamenkovic, V.; Mun, B. S.; Mayrhofer, K. J.; Ross, P. N.; Markovic, N. M.; Rossmeisl, J.; Greeley, J.; Norskov, J. K.Angew. Chem. Int. Ed. 2006, 45, 2897. doi: 10.1002/anie.200504386.
  • 8Norskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H.Nat. Chem. 2009, 1, 37. doi: 10.1038/NCHEM.121.
  • 9Viswanathan, V.; Hansen, H. A.; Rossmeisl, J.; N?rskov, J. K.ACS Catal. 2012, 2, 1654. doi: 10.1021/cs300227s.
  • 10Greeley, J.; Stephens, I. E.; Bondarenko, A. S.; Johansson, T.P.; Hansen, H. A.; Jaramillo, T. F.; Rossmeisl, J.; Chorkendorff, I.; Norskov, J. K. Nat. Chem. 2009, 1, 552. doi: 10.1038/NCHEM.367.

二级参考文献7

共引文献13

同被引文献134

引证文献12

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部