摘要
We recorded locomotor performance of Reeves' butterfly lizards(Leiolepis reevesii) on a racetrack and to describe hindlimb kinematic patterns and to evaluate the effect of speed on hindlimb kinematics. The studied lizards predominantly used quadrupedal locomotion at relatively low speeds, but ran bipedally with a digitigrade posture at high speeds. Speed was positively correlated with both stride length and stride frequency, and was negatively correlated with duty factor. Lizards modulated speed probably by a combination of changing frequency and amplitude of limb movements. Within the range of standardized speeds from 50 to 150 cm/s, speed effects on 28 out of a total of 56 kinematic variables were significant. The hip height at footfall increased as speed increased, whereas the amplitude of vertical oscillations of the hip did not vary with speed. The total longitudinal and dorsoventral movements relative to the hip varied with speed for all parts of the limb that were distal to the knee, whereas the lateral movements did not. The knee and ankle angle at footfall varied with speed, but did not at the end of stance. The degree of pelvis rotation during the entire stride cycle did not vary with speed. Our results suggest that pelvic rotation and femoral protraction/retraction have a minor role in modulating speed in L. reevesii.
We recorded locomotor performance of Reeves' butterfly lizards(Leiolepis reevesii) on a racetrack and to describe hindlimb kinematic patterns and to evaluate the effect of speed on hindlimb kinematics. The studied lizards predominantly used quadrupedal locomotion at relatively low speeds, but ran bipedally with a digitigrade posture at high speeds. Speed was positively correlated with both stride length and stride frequency, and was negatively correlated with duty factor. Lizards modulated speed probably by a combination of changing frequency and amplitude of limb movements. Within the range of standardized speeds from 50 to 150 cm/s, speed effects on 28 out of a total of 56 kinematic variables were significant. The hip height at footfall increased as speed increased, whereas the amplitude of vertical oscillations of the hip did not vary with speed. The total longitudinal and dorsoventral movements relative to the hip varied with speed for all parts of the limb that were distal to the knee, whereas the lateral movements did not. The knee and ankle angle at footfall varied with speed, but did not at the end of stance. The degree of pelvis rotation during the entire stride cycle did not vary with speed. Our results suggest that pelvic rotation and femoral protraction/retraction have a minor role in modulating speed in L. reevesii.
基金
supported by grants from the National Natural Science Foundation of China (project no. 30860046)
Nanjing Normal University