期刊文献+

还原氧化石墨烯/Au复合微电极阵列的制备及光电特性 被引量:2

Preparation of Reduced-graphene-oxide/Au Composite Microelectrode Array and Its Optical and Electrical Characteristics
下载PDF
导出
摘要 利用双光束干涉-无掩模光刻技术制备了周期性氧化石墨烯微结构阵列,利用肼蒸气对氧化石墨烯脱氧还原,然后蒸镀超薄Au薄膜制备了还原氧化石墨烯/Au复合微电极阵列(R-GO/Au).对复合电极在可见光波段的透过率和表面电阻进行了表征,结果表明,R-GO/Au复合微电极阵列具有良好的光电特性.将R-GO/Au复合微电极阵列引入到有机太阳电池中作为半透明阳极,器件的光电转化效率可达3.43%. The reduced-graphene-oxide/Au( R-GO/Au) composite microelectrode array was fabricated by a simple method. The graphene oxide( GO) array was prepared by two beam interference-holographic lithography technique,and then reduced by hydrazine vapor to partially remove the oxygen-containing groups. Ultrathin Au film was deposited on the reduced-graphene-oxide( R-GO) array to improve its conductivity. The results indicate that R-GO/Au composite microelectrode array exhibits excellent surface morphology with precisely controlled period and high resolution,good transparency in visible light region and high conductivity. The organic photovoltaic device based on the R-GO/Au composite microelectrode array exhibits a high power conversion efficiency of 3. 43%.
作者 季津海 闻雪梅 陈洋 毕宴钢 JI Jinhai WEN Xuemei CHEN Yang BI Yangang(College of Electronic and Engineering, Jilin University, Changchun 130012, China)
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2016年第10期1826-1832,共7页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:61322402)资助~~
关键词 还原氧化石墨烯/Au复合电极 微电极阵列 双光束干涉-无掩模光刻技术 肼蒸气还原 Reduced-graphene-oxide/Au composite electrode Microelectrode array Two beam interference holographic lithography technique Hydrazine vapor reduction
  • 相关文献

参考文献47

  • 1Rahim R. , Ochoa M. , Parupud T. , Zhao X. , Yazdi I. K. , Dokmeci M. R. , Tamayol A. , Khademhosseini A. , Ziaie B. , Sens. Actuators B, 2016, 229(28), 609-617.
  • 2Deganello D. , Cherry J. A. , Gethin D. T. , Claypole T. C. , Thin Solid Films, 2010, 518(21), 6113-6116.
  • 3Lu C. , Chen Q. , Zhou T. , Bozic D. , Fu Z. , Pan J. Q. , Feng G. , Mol. Psychiatr. , 2016, 21, 159-168.
  • 4Kamaraju N. , Rubano A. , Jian L. K. , Saha S. , Venkatesan T. , N?tzold J. , Campen R. K. , Wolf M. , Kampfrath T. , Light Sci. Appl. , 2014, 3, e155.
  • 5Ding R. , Feng J. , Zhou W. , Zhang X. L. , Fang H. H. , Yang T. , Wang H. Y. , Hotta S. , Sun H. B. , Sci. Rep. , 2015, 5, 12445.
  • 6Huang Y. Z. , Fang Y. R. , Zhang Z. L. , Zhu L. , Sun M. T. , Light Sci. Appl. , 2014, 3, e199.
  • 7Liu Y. F. , Feng J. , Cui H. F. , Zhang Y. F. , Yin D. , Bi Y. G. , Song J. F. , Chen Q. D. , Sun H. B. , Nanoscale, 2013, 5(22), 10811-10815.
  • 8Li Z. H. , Cho E. S. , Kwon S. J. , Appl. Surf. Sci. , 2010, 257(3), 776-780.
  • 9Namsun C. , Youngseok K. , Sohee K. , ACS Appl. Mater. Interfaces, 2016, 8(9), 6269-6276.
  • 10Liu Y. F. , Feng J. , Zhang Y. F. , Zhang Y. F. , Yin D. , Bi Y. G. , Song J. F. , Chen Q. D. , Sun H. B. , Org. Electron. , 2014, 15(2), 478-483.

二级参考文献41

共引文献27

同被引文献15

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部