摘要
This paper studies the output feedback dynamic gain scheduled control for stabilizing a spacecraft rendezvous system subject to actuator saturation. By using the parametric Lyapunov equation and the gain scheduling technique, a new observer-based output feedback controller is proposed to solve the semi-global stabilization problem for spacecraft rendezvous system with actuator saturation. By scheduling the design parameter online, the convergence rates of the closed-loop system are improved. Numerical simulations show the effectiveness of the proposed approaches.
This paper studies the output feedback dynamic gain scheduled control for stabilizing a spacecraft rendezvous system subject to actuator saturation. By using the parametric Lyapunov equation and the gain scheduling technique, a new observer-based output feedback controller is proposed to solve the semi-global stabilization problem for spacecraft rendezvous system with actuator saturation. By scheduling the design parameter online, the convergence rates of the closed-loop system are improved. Numerical simulations show the effectiveness of the proposed approaches.
基金
partially supported by the National Basic Research Program(973) of China(No.2012CB821205)
the Innovative Team Program of National Natural Science Foundation of China(No.61321062)
the Astronautical Science and Technology Innovation Fund of China Aerospace Science and Technology Corporation