期刊文献+

TLD目标跟踪算法综述

Survey on TLD object tracking algorithm
下载PDF
导出
摘要 TLD目标跟踪算法将检测和跟踪同时加入跟踪框架,并引入半监督机器学习算法对锁定目标不断学习以捕获其最新外观,使目标无处可逃,从而实现对未知目标的长时跟踪。简要介绍了TLD算法的理论背景和系统框架,并指出其存在的主要缺陷。然后对各个缺陷所提出的改进方法进行详细地综述,并给出自己的评述。最后总结全文并展望TLD目标跟踪算法在未来几年的发展趋势。 In order to enable long-term tracking for unknown objects, a semi-supervized machine learning algorithm is added in ob- ject tracking based on TLD algorithm which matches traditional tracking algorithm and detection algorithm for keeping capturing the newest appearances by continuous learning. Firstly, TLD' s theoretical background, tracking framework and major defects are in- troduced. Then, the improvements of the original algorithm are elaborately disscussed. Finally, the propspects of object tracking based on TLD algorithm are presented.
出处 《电视技术》 北大核心 2016年第10期101-106,共6页 Video Engineering
基金 2015年重庆市研究生科研创新项目(CYS15166)
关键词 长时目标跟踪 半监督机器学习 中直流跟踪器 随机森林分类器 object tracking semi-supervized machine learning median flow tracker random forest classifier
  • 相关文献

参考文献26

  • 1KALAL Z, MIKOLAJCZYK K, MATAS J. Forward-back- ward error: automatic detection of tracking failures [ C l// Proc. 20th International Conference on Pattern Recognition (ICPR). [S. 1.] :IEEE,2010:2756-2759.
  • 2KALAL Z, MATAS J, MIKOLAJCZYK K. Online learning of robust object detectors during unstable tracking[ C]// Proe. IEEE 12th International Conference on Computer Vi- sion Workshops ( ICCV Workshops) . [ S. 1. ] : IEEE, 2009 : 1417-1424.
  • 3KALAL Z, MATAS J, MIKOLAJCZYK K. Pn learning: bootstrapping binary classifiers by structural constraints [C]// Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . [ S. 1. ] : 1EEE,2010:49-56.
  • 4KALAL Z, MIKOLAJCZYK K, MATAS J. Tracking-learn- ing-detection[ J]. IEEE transactions on pattern analysis and machine intelligence,2012,34(7) : 1409-1422.
  • 5NEMADE B, BHARADI V A. Adaptive automatic track- ing, learning and detection of any real time object in the vid- eo stream[ C ]// Proc. IEEE 5th International Conference on Confluence The Next Generation Information Technology Summit (Confluence). [ S. 1.] :IEEE,2014: 569-575.
  • 6HAILONG W, GUANGYU W,JIANXUN L. An improved tracking- learning - detection method [ C ]// Proc. IEEE 34th Chinese Control Conference (CCC). [ S. 1. ] : IEEE, 2015 : 3858-3863.
  • 7ZHANG P,SUN Y Q,YA-LI W U,et al. A parallel imple-mentationofTLDalgorithmusingCUDA[C]//2013全国高性能计算学术年会.桂林:[出版者不详],2013:220-224.
  • 8龚小彪,何涛.基于卡尔曼滤波的抗遮挡TLD跟踪算法[J].信息与电脑(理论版),2014,0(4):195-196. 被引量:1
  • 9王建刚,李醒飞,陈诚,谭文斌.改进TLD算法在光电跟踪中的应用[J].红外技术,2015,37(10):824-830. 被引量:7
  • 10高帆,吴国平,刑晨,马丽.TLD目标跟踪算法研究[J].电视技术,2013,37(11):70-74. 被引量:14

二级参考文献188

  • 1彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 2刘晓辉,陈小平.基于扩展卡尔曼滤波的主动视觉跟踪技术[J].计算机辅助工程,2007,16(2):32-37. 被引量:10
  • 3BradskiG,KaeblerA.学习OpenCV(中文版)[M].于仕琪,刘瑞帧,译.北京:清华大学出版社,2009.
  • 4Z.Kalal,J.Matas and K.Mikolajczyk.Weighted sampling for largescale boosting 2008.
  • 5Z.Kalal,K.Mikolajczyk and J.Matas.Face-TLD:Tracking-Learning-Detection Applied to Faces:3789-3792.
  • 6L.Wiskott,J.M.Fellous,N.Kuiger,et al.Face recognition by elastic bunch graph matching[J].Pattern Analysis andMachine Intelligence,IEEE Transactions on,1997,19(7):775-779.
  • 7Z.Kalal,J.Matas and K.Mikolajczyk.Pn learning:Bootstrapping binary classifiers by structural constraints 2010:.
  • 8Z.Kalal,J.Matas and K.Mikolajczyk.Online learning of robust object detectors during unstable tracking 2009:1417-1424.
  • 9王江涛,杨静宇.遮挡情况下基于Kalman均值偏移的目标跟踪[J].系统仿真学报,2007,19(18):4216-4220. 被引量:30
  • 10Kalal Z, Matas J, Mikolajczyk K. Online learning of robust object detectors during unstable tracking, http://info, ee. surrey, ac. uk/ Persmal/Z. Ka|al/Publication2009_olcv. pdf. 2009.

共引文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部