摘要
建立了一类具有Beddington-DeAngelis功能反应函数的捕食-被捕食模型,分析了其平衡点的稳定性,得到其平衡点稳定的条件.选择时滞t作为分岔参数,得到了其发生Hopf分岔的临界值,并通过数值模拟验证了理论分析的正确性.
A predator-prey model with Beddington-DeAngelis functional response is established. The stability of its equilibrium is analyzed,and the conditions determining the stability of the equilibrium are obtained. By choosing time delay as the bifurcation parameter,the critical value at which a Hopf bifurcation occurs is gotten. Numerical simulations verify the correctness of the theoretical analysis.
作者
陈丽娟
王万永
王可君
Chen Lijuan Wang Wanyong Wang Kejun(College of Science* Henan University of Engineering ,Zhengzhou 451191, China)
出处
《河南科学》
2016年第10期1614-1619,共6页
Henan Science
基金
国家自然科学基金项目(11302072)
郑州市科技局资助项目(20141391)