期刊文献+

一类具有Beddington-DeAngelis功能反应函数的捕食被捕食模型Hopf分岔分析

Hopf Bifurcation of a Predator-Prey Model with Beddington-DeAngelis Functional Response
下载PDF
导出
摘要 建立了一类具有Beddington-DeAngelis功能反应函数的捕食-被捕食模型,分析了其平衡点的稳定性,得到其平衡点稳定的条件.选择时滞t作为分岔参数,得到了其发生Hopf分岔的临界值,并通过数值模拟验证了理论分析的正确性. A predator-prey model with Beddington-DeAngelis functional response is established. The stability of its equilibrium is analyzed,and the conditions determining the stability of the equilibrium are obtained. By choosing time delay as the bifurcation parameter,the critical value at which a Hopf bifurcation occurs is gotten. Numerical simulations verify the correctness of the theoretical analysis.
作者 陈丽娟 王万永 王可君 Chen Lijuan Wang Wanyong Wang Kejun(College of Science* Henan University of Engineering ,Zhengzhou 451191, China)
出处 《河南科学》 2016年第10期1614-1619,共6页 Henan Science
基金 国家自然科学基金项目(11302072) 郑州市科技局资助项目(20141391)
关键词 捕食-被捕食模型 Beddington-De Angelis功能反应 时滞 稳定性 HOPF分岔 predator-prey model Beddington-DeAngelis functional response time delay stability Hopf bifurcation
  • 相关文献

参考文献3

二级参考文献13

  • 1Kuang Y. Delay Differential Equations with Applications in Population Dynamics [M]. New York: Academic Press, 1993.
  • 2Cooke K. Grossman Z. Discrete delay, distributed delay and stability switcbes[J]. J Math Anal Appl, 1982,86: 592-627.
  • 3Hassard B, Kazarinoff N, Wan Y H. Theory and Applications of Hopf Bifurcation[M]. Soc Lect Notes, Series, 41. Cambridge; Cambridge Univ Press,1981.
  • 4Hale J, Lunel S V. Introduction to Functional Differential Equations[M]. New York:Springer-Verlag, 1993.
  • 5Kazarinoff N, Wan Y H, Van den Driessche P. Hopf bifurcation and stability of periodic solutions of differentialdiffrenee and integro-diffrence equations[J]. J Inst Math Appl,1978,21:461-477.
  • 6Meng X Z, Han D, Song Y L. Stability and bifurcation in a non-kolmogorov type prey-predator system with time delay[J]. Mathematical and Computer Modelling, 2005,41 : 1445-1455.
  • 7Cantrell R S, Consner C. On the dynamics of predator-prey models with Beddington-DeAngelis functional response[J]. J Math Anal Appl, 2001, 257: 206-222.
  • 8Hwang T W. Global analysis of the predator-prey system with Beddington-DeAngelis functional response[J]. J Math Anal Appl, 2003, 281: 395-401.
  • 9Hassard. B, Kazarinoff N, Wan Y H. Theory and Applications of Hopf Bifurcation[M]. Soc Lect Notes, Series, 41. Cambridge: Cambridge Univ Press, 1981.
  • 10Cooke K, Grossman Z. Discrete delay, discrete delay and stability switches[J]. J Math Anal Appl, 1982, 86: 592-627.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部