期刊文献+

CNT@TiO_2-NS锂离子电池负极材料的制备及电化学性能分析 被引量:2

Synthesis of Carbon nanotubes-supported TiO_2-B nanosheets with enhanced lithium storage properties
下载PDF
导出
摘要 高能量密度、快速充放电能力及长循环使用寿命的新型电极材料开发是锂离子电池应用领域面临的一个重大的课题。本文以乙二醇为溶剂,Ti Cl3为Ti O2为前驱体,碳纳米管(CNTs)为载体,通过水热法合成了CNTs负载Ti O2-B纳米片复合材料(CNT@Ti O2-NS),利用X射线衍射仪(XRD)、透射电镜(TEM)与热重分析(TG)对CNT@Ti O2-NS复合材料结构与形貌进行表征,结果显示:CNTs的加入有助于Ti O2-B相的生成,CNTs能够有效改善CNT@Ti O2-NS复合材料的导电性和减缓充放电过程中的体积变化;CNT@Ti O2-NS复合材料展现了良好的循环稳定性与倍率性能,在0.6 C的电流密度下,经过100次循环,材料的可逆比容量为286.4(m A·h)/g,在50 C倍率下可逆比容量还能达到121.5(m A·h)/g。因此,通过本研究方法制备的CNT@Ti O2-NS复合材料在大功率锂离子电池具有广阔的应用前景。 It is very practically significant to develop high energy density,fast and long cycle life electrode materials for lithium ion batteries.A facile process was developed for the synthesis of carbon nanotubes-supported TiO_2-B nanosheets(CNT@TiO_2-NS)composite based on the hydrothermal treatment titanium(III)chloride and carbon nanotubes in an ethylene glycol.The morphology and microstructure of the composites were examined by X-ray diffraction(XRD),transmission electron microscopy(TEM) and thermogravimetry(TG).The addition of CNTs is helpful to the formation of TiO_2-B phase.What's more,CNT@TiO_2-NS exhibited high rate performance and stability due to the enhanced conductivity of the electrode and accommodation to volume/strain changes during lithium insertion-extraction.The CNT@TiO_2-NS composites have reversible specific capacity of 286.4 m A·h·g-1at 0.6 C after 100 cycles.In addition,it can deliver a discharge capacity of 121.5 m A·h·g-1 at an ultra high rate of 50 C,indicating its great potential in high power lithium ion batteries.
出处 《石河子大学学报(自然科学版)》 CAS 2016年第4期501-505,共5页 Journal of Shihezi University(Natural Science)
基金 国家自然科学基金项目(21263021 U1303291)
关键词 水热合成 TiO2-B纳米片 碳纳米管 锂离子电池 Hydrothermal synthesis TiO2-B nanosheets Carbon nanotubes Lithium-ion batteries
  • 相关文献

参考文献4

二级参考文献28

  • 1郝彦忠,蔡生民.TiO_2微粒功能化多孔Al_2O_3膜的光电化学研究[J].化学学报,2005,63(13):1201-1204. 被引量:2
  • 2Nuspl G, Yoshizawa K, Yamabe T. Lithium intercalation in TiO2 modifications[J]. Mater. Chem., 1997, 7(12): 2 529~2 536.
  • 3Kasuga T, Hiramatsu M, Hoson A. Formation of titanium oxide nanotube[J]. Langmuir, 1998, 14: 3 160~3 163.
  • 4Du G H, Chen Q, Che R C, et al. Preparation and structure analysis of titanium oxide nanotubes[J].Appl. Phys. Lett., 2001, 79(22): 3 702~3 704.
  • 5Sun X M, Li Y D. Synthesis and characterization of ion-exchangeable titanate nanotubes[J].Chem. Eur. J., 2003, 9: 2 229~2 238.
  • 6Tournoux M, Marchand R, Brohan L. Layered K2Ti4O9 and the open metastable TiO2(B) structure[J]. Prog. Solid State Chem., 1986, 17: 33~52.
  • 7Feist T P, Davies P K. The soft chemical synthesis of TiO2(B) from layered titanates[J]. Solid State Chem., 1992, 101: 275~295.
  • 8Yuan Z Y,Colomer J F,Su B L.Titanium oxide nanoribbons[J].Chem. Phys. Lett.,2002,363:362~366.
  • 9Kavan L, Gratzel M.Facile synthesis of nanocrystalline Li4Ti5O12(spinel) exhibiting fast Li Insertion [J].Elecrochem. Solid-State Lett.,2002,5(2):A39~A42.
  • 10Wagemaker M, Kentgens A P M, Mulder F M, Equilibrium lithium transport between nanocrystalline phases in intercalated TiO2 anatase[J]. Nature, 2002, 418: 3 97~3 99.

共引文献18

同被引文献3

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部