期刊文献+

基于位串内容感知的数据分块算法

A bit string content-aware data chunking algorithm
下载PDF
导出
摘要 针对基于内容的可变长度的分块CDC算法中数字签名计算需要耗费大量CPU开销的问题,提出了一种基于位串内容感知的数据块分块算法。算法利用每一次失败匹配尝试所带来的位特征信息,最大限度地排除不能匹配的位置,从而获得最大的跳跃长度,减少中间计算和比较的开销。实验结果表明,本算法减小了数据分块过程中数字签名计算的开销,降低了确定块边界时的CPU资源消耗,从而优化了数据分块的时间性能。 Aiming at the problem of a large amount of overhead introduced by the content defined chunking algorithm (CDC) in calculating the digital signature, we present a novel data chunking algorithm based on bit string content awareness. The proposed algorithm eliminates unmatched positions to the utmost by taking advantage of the bit feature information acquired through each failure matching. Since the maximum jump length is obtained, intermediate calculation and comparison cost are reduced. Experimental results show that the algorithm can reduce the overhead of digital signature calculation in the process of data chunking, cut down CPU resource consumption for chunk boundary determination, and optimize the time performance of data chunking.
出处 《计算机工程与科学》 CSCD 北大核心 2016年第10期1967-1973,共7页 Computer Engineering & Science
基金 国家自然科学基金(61272497) 湖北省自然科学基金(2013CFB447)
关键词 位串内容感知 数据分块 数字签名 bit string content-aware data chunking digital signature
  • 相关文献

参考文献3

二级参考文献70

  • 1陆游游,敖莉,舒继武.一种基于重复数据删除的备份系统[J].计算机研究与发展,2012,49(S1):206-210. 被引量:5
  • 2韩德志,谢长生,李怀阳.存储备份技术探析[J].计算机应用研究,2004,21(6):1-4. 被引量:49
  • 3郭天杰,曹强,谢长生.远程镜像技术和方法研究[J].计算机工程与科学,2006,28(10):38-41. 被引量:6
  • 4Bhagwat D,Pollack K,Long DDE,Schwarz T,Miller EL,P-ris JF.Providing high reliability in a minimum redundancy archival storage system.In:Proc.of the 14th Int'l Symp.on Modeling,Analysis,and Simulation of Computer and Telecommunication Systems (MASCOTS 2006).Washington:IEEE Computer Society Press,2006.413-421.
  • 5Zhu B,Li K.Avoiding the disk bottleneck in the data domain deduplication file system.In:Proc.of the 6th Usenix Conf.on File and Storage Technologies (FAST 2008).Berkeley:USENIX Association,2008.269-282.
  • 6Bhagwat D,Eshghi K,Mehra P.Content-Based document routing and index partitioning for scalable similarity-based searches in a large corpus.In:Berkhin P,Caruana R,Wu XD,Gaffney S,eds.Proc.of the 13th ACM SIGKDD Int'l Conf.on Knowledge Discovery and Data Mining (KDD 2007).New York:ACM Press,2007.105-112.
  • 7You LL,Pollack KT,Long DDE.Deep store:An archival storage system architecture.In:Proc.of the 21st Int'l Conf.on Data Engineering (ICDE 2005).Washington:IEEE Computer Society Press,2005.804-815.
  • 8Quinlan S,Dorward S.Venti:A new approach to archival storage.In:Proc.of the 1st Usenix Conf.on File and Storage Technologies (FAST 2002).Berkeley:USENIX Association,2002.89-102.
  • 9Sapuntzakis CP,Chandra R,Pfaff B,Chow J,Lam MS,Rosenblum M.Optimizing the migration of virtual computers.In:Proc.of the 5th Symp.on Operating Systems Design and Implementation (OSDI 2002).New York:ACM Press,2002.377-390.
  • 10Rabin MO.Fingerprinting by random polynomials.Technical Report,CRCT TR-15-81,Harvard University,1981.

共引文献130

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部