期刊文献+

基于H_∞滤波器的交互多模型算法

Interacting multiple model algorithm based on H_∞ filter
原文传递
导出
摘要 为了解决在实际情况中噪声的统计特征信息经常残缺甚至完全未知的问题,在量测噪声的协方差未知的前提下,提出了一种方法解决含有马尔可夫参数线性离散系统的估计问题.在交互多模型算法的基础上融合H_∞滤波器构造估计器,得到交互过程中必需的噪声统计特征,进而对目标的状态进行估计.该方法不但解决了噪声信息缺失问题,而且保留了交互多模型算法的优异性能.通过与单模型H_∞滤波进行比较,试验仿真结果证实了该算法的有效性. In practice, the noise statistics are usually unknown or not perfectly known. To deal with the estimation problem in linear discrete-time systems with Markov jump parameters, where the measurement noise covariance is unknown, a approach was presented. This approach was based on the interacting multiple model (IMM) framework. A H∞ filter was employed to construct a noise statistics estimator to obtain the information which was necessary for the IMM algorithm. In the proposed approach, the noise statistics loss problem was solved while the merits of IMM algorithm was reserved. The effectiveness of the proposed approach was demonstrated in comparison with single-model H∞, filter through Monte Carlo simulation for maneuvering target tracking.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第10期77-81,共5页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61374021 61531015) 航空科学基金资助项目(2015ZC76006 20132076002) 中国卫星海上测控部联合实验室开放基金资助项目(FOM2015OF009)
关键词 H∞滤波器 交互多模型算法 状态估计 噪声估计 目标跟踪 H∞ filter interacting multiple model algorithm state estimation noise statistics esti mate target tracking
  • 相关文献

参考文献2

二级参考文献23

  • 1Sun Shuli. Optimal linear estimation for systems with multiple packet dropouts[J]. Automatica, 2008, 44 (5) : 1333-1342.
  • 2Bruno S. Kalman filtering with intermittent observa- tions[J]. IEEE Transactions on Automatic Control, 2004, 49(9): 1453-1464.
  • 3Huang M, Dey S. Stability of Kalman filtering with Markovian packet losses[J]. Automatica, 2007, 43 (4) : 598-607.
  • 4Liu X H, Andrea G. Kalman filtering with partial ob- servation losses[C]//43rd IEEE Conference on Deci sion and Control. Piscatway: Institute of Electrical and Electronics Engineers Inc, 2004: 4180-4186.
  • 5Mo Y, Sinopoli B. A characterization of the critical value for Kalman filtering with intermittent observa- tions[C]//47th IEEE Conference on Decision and Control. Piscatway: Institute of Electrical and Elec- tronics Engineers Inc, 2009: 2692-2697.
  • 6Dunik J, Straka O, Simandl M. The development of a randomized unscented Kalman filter[C]//Proceedings of the 18th IFAC World Congress. New York: Cur- ran Associates Inc, 2011:8-13.
  • 7Nakamon S, Caballero-Aguila R, Hermoso-Carazo A. Signal estimation with nonlinear uncertain obser- vations using covariance informatio [J]. Journal of Statiscita Computation and Simulation, 2009, 79(1):55-56.
  • 8NaNacara W, Yaz E E. Recursive estimator for linear and nonlinear systems with uncertain observations [J]. Signal Processing, 1997, 62(2): 215-218.
  • 9Alfonso, Branko F R, Luca T. Cramer-Rao bound for nonlinear filtering with pd< 1 and its application to target tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(8): 1916-1924.
  • 10Hermoso-Carazo A, Linaress-Perez J. Different ap- proaches for state filtering in nonlinear systems with uncertain observations[J]. Applied Mathmatics and Computation, 2007, 187(2) : 708-724.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部