摘要
船舶捷联惯导导航定位的速度计算中,通常采用经典的捷联惯导速度算法,对划桨误差的补偿采用了多子样算法。为了提高速度算法的精度需要增加子样数量,会造成运算量很大地增加;而且只有当速度运算周期内的所有采样值都取得后才能计算,不能分散计算,因此不方便工程应用。如何减少速度划桨误差补偿的计算量,且能够保持对划桨误差补偿后的速度计算的精度,以满足实时性速度计算的需求,是船舶捷联惯导导航定位的速度计算研究的难点之一。针对这个问题从工程实用性出发,根据速度更新周期内已经完成的姿态矩阵计算的基础上,提出了一种速度划桨误差补偿的积分算法。并分别在速度计算周期内姿态矩阵更新两次和三次的情况下,配合加速度计采样值分别为比力和速度增量等不同条件,对算法进行了推导。通过模拟船舶运动时产生的划桨运动对算法进行了仿真。仿真结果表明,积分算法与经典算法相比具有精度高、计算量小、可以分散计算等特点,因此算法具有很高的实用价值。
In order to compensate the velocity sculling error of ship SINS,custom multi- sample algorithms are used to add the number of sample,so that the amount of calculation is increased greatly and calculation can not operate dispersedly. In consideration of engineering application,an integration algorithm of velocity sculling error compensation using the calculated attitude matrix was proposed in the paper. According to the situations that attitude matrix has been updated twice or three times and specific force acceleration sample or velocity increment sample,the expressions of this algorithm were discussed. The simulation of ship sculling error shows that this integration algorithm is simple and accurate,and it employs small amount of calculation and can be operated dispersedly. So this integration algorithm is suitable to ship engineering application.
出处
《计算机仿真》
CSCD
北大核心
2016年第10期226-231,共6页
Computer Simulation
关键词
捷联惯导系统
划桨误差
比力
速度增量
Strapdown inertial navigation system
Sculling error
Specific force acceleration
Velocity increment