期刊文献+

基于用户引力的协同过滤推荐算法 被引量:9

Collaborative filtering recommendation algorithm based on user's gravitation
下载PDF
导出
摘要 针对传统的基于用户的协同过滤推荐算法存在用户兴趣偏好模型过于粗糙和邻居集不够准确等问题,提出了一种新的协同过滤推荐算法,命名为基于用户间引力的协同过滤推荐算法。该算法认为用户使用的社会标签可以反映用户的喜好类型及喜好程度,利用社会标签构建用户喜好物体模型,并计算它们之间的万有引力,把万有引力的大小作为用户相似度的度量,在此基础上获得目标用户的邻居用户和评分预测,把获得预测评分高的若干项目推荐给用户。实验结果说明算法可以获得比其他算法较优的推荐性能。 There are some shortcomings in user-based collaborative filtering, this paper proposed a new collaborative filtering recommendation algorithms, named user' s gravitation based collaborative filtering (UGBCF) recommendation algorithm, it used a new method of similarity measure to improve the user-based collaborative recommendation algorithms. This paper thought that the social tags used by user can reflect user' s preference and how much the preference, so it used those social tags to build user' s preference object model. It computed the gravitation between preference objects, viewed the gravitation as the similarity of users. According to the similarity, the neighbor user of the target user could be gotten, and the prediction score of his unseleeted items could be calculated by aggregated the neighbor users' score. The results of experiment show that UGBCF can provide better recommendation quality than other collaborative filtering recommendation.
作者 王国霞
出处 《计算机应用研究》 CSCD 北大核心 2016年第11期3329-3333,共5页 Application Research of Computers
关键词 推荐算法 协同过滤推荐 万有引力定律 社会标签 recommendation algorithms collaborative filtering universal law of gravitation social tag
  • 相关文献

参考文献17

  • 1Shardanand U, Maes P. Social information filtering: algorithms for automation "word of mouth" [ C ]//Proc of SIGCHI Conference on Human Factors in Computing Systems. 1995.
  • 2Basu C, Hirsh H, Cohen W. Recommendation as classification: using social and content-based information in recommendation [ C ]// Proc of the 15th National/10th Conference on Artificial Intelligence/ Innovative Applications of Artificial Intelligence. Menlo Park : AAAI, 1998 : 714-720.
  • 3Nichols D M. Implicit rating and filtering [ C ]//Proc of the 5th DE- LOS Workshop on Filtering and.Collaborative Filtering. 1998:31-36.
  • 4Billsus D, Warmuth M K. Learning collaborative information filters [C]//Pmc of the 15th International Conference on Machine Lear- ning. 1998: 46-53.
  • 5Herlocker J L, Konstan J A, Borchers A, et al. An algorithmicframework for performing collaborative filtering [ C ]//Proc of the 22nd Annual International ACM SIGIR Conference on Research and Deve- lopment in Information Retrieval. 1999.
  • 6Resnich P, Iacovou N, Suchak M,et al. GroupLens: an open archi- tecture for collaborative filtering of netnews [ C ]//Proc of ACM Con- ference on Computer Supported Cooperative Work. 1994: 175-186.
  • 7Kim H N, Ji A T, Ha I,et al. Collaborative filtering based on colla- borative tagging for enhancing the quality of recommendation [ J ]. Elec- tronic Commerce Research and Application,2010,9( 1 ) :73-83.
  • 8Durao F, Dolog P. A personalized tag-b~ed recommendation in social Web systems [C ]//Proc of International Workshop on Adaption and Personalization for Web 2. O. 2009 : 22- 26.
  • 9邓爱林,朱扬勇,施伯乐.基于项目评分预测的协同过滤推荐算法[J].软件学报,2003,14(9):1621-1628. 被引量:558
  • 10韦素云,业宁,吉根林,张丹丹,殷晓飞.基于项目类别和兴趣度的协同过滤推荐算法[J].南京大学学报(自然科学版),2013,49(2):142-149. 被引量:25

二级参考文献123

  • 1周军锋,汤显,郭景峰.一种优化的协同过滤推荐算法[J].计算机研究与发展,2004,41(10):1842-1847. 被引量:103
  • 2苏贵洋,马颖华,李建华.一种基于内容的信息过滤改进模型[J].上海交通大学学报,2004,38(12):2030-2034. 被引量:22
  • 3贾丽会,张修如.BP算法分析与改进[J].计算机技术与发展,2006,16(10):101-103. 被引量:48
  • 4陈刚,刘发升.基于BP神经网络的数据挖掘方法[J].计算机与现代化,2006(10):20-22. 被引量:14
  • 5张文良,黄亚楼,倪维健.基于差分贡献的垃圾邮件过滤特征选择方法[J].计算机工程,2007,33(8):80-82. 被引量:10
  • 6Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217.
  • 7Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201.
  • 8Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186.
  • 9Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999.
  • 10Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362.

共引文献1119

同被引文献70

引证文献9

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部