期刊文献+

基于SVR和NSGA-Ⅱ的钛合金铣削参数多目标优化 被引量:2

Cutting Parameters Multi-object Optimization of Titanium Alloy Milling Process Based on Support Vector Regression and NSGA-Ⅱ
原文传递
导出
摘要 对钛合金材料Ti6Al4V铣削加工进行有限元数值计算,结合试验设计方法构建了基于支持向量回归机(SVR)的铣削力预测模型,以材料去除率和刀具寿命为优化目标,提出一种基于支持向量回归机和带精英策略的非支配排序遗传算法(NSGA-Ⅱ)的优化方法。结果表明,该方法能够获得满意的Pareto解集,为钛合金铣削参数优化提供一种新的方法,具有良好的推广价值。 In this paper, the Titanium Alloy Ti6Al4V milling process is analysized by ifnite element method, a milling force prediction model was established based on Support Vector Regression (SVR), The optimization design methodology based on SVR and NSGA-II is proposed for Titanium Alloy milling process cutting parameters. The results show that this methodology has a good performance in ifnding satisfying Pareto solutions, and thus can be used in the machining process parameters optimum and other material processing ifelds.
作者 向国齐
出处 《航空精密制造技术》 2016年第5期36-40,共5页 Aviation Precision Manufacturing Technology
基金 四川省科技支撑计划项目(12YZJ009) 四川省教育厅项目(13za0310)资助项目
关键词 钛合金 支持向量机 NSGA-II算法 多目标优化 Titanium Alloy SVR NSGA-II algorithm multi-object optimization
  • 相关文献

参考文献3

  • 1Gill S S, Singh J. An adaptive neuro—fuzzy inference system modeling for material removal rate in stationary ultrasonic drilling of sillimanite ceramic[J]. Expert Systems with Applications, 2010, 37(8): 5590-5598.
  • 2杨吟飞,史琦,陈波,王俊斌,章熠鑫.钛合金薄壁件铣削力预测模型的建立[J].航空精密制造技术,2014,50(2):20-23. 被引量:3
  • 3K. Deb, A. Pratap, S. Agarwal. A fast and elitist multiohjective genetic algorithm:NSGA II .IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.

二级参考文献7

  • 1万敏,张卫红.薄壁件周铣切削力建模与表面误差预测方法研究[J].航空学报,2005,26(5):598-603. 被引量:39
  • 2董辉跃,柯映林,杨慧香.薄壁板高速铣削加工过程中的让刀误差预测[J].浙江大学学报(工学版),2006,40(4):634-637. 被引量:13
  • 3W.A.Kline,R.E.Devor. The prediction of surface accuracy in end milling [J].Transactions of ASME Journal of Engineering for Industry, 1982,104(3): 272-278.
  • 4Won-Soo Yun, Dong-Woo Cho. Accurate 3-D cutting force prediction using cutting condition independent coefficients in end milling [J]. International Journal of Machine Tool & Manufacture, 2001, 41:463-478.
  • 5E.Usui,T.Shirakashi. Mechanics of metal machining-form descriptive to predictive theory [C]. on the art of cutting metals 75 years later,ASME PED 7,1952:13-35.
  • 6Svetan Ratchev,Evan Govender,Stan Nikov,et al. ,Force and Deflection Modeling in Milling of Low-Rigidity Complex Parts[J]. Journal of Materials Processing Technology,2003,143 (12):96-801.
  • 7武凯,何宁,姜澄宇,李亮,何磊.立铣空间力学模型分析研究[J].南京航空航天大学学报,2002,34(6):553-556. 被引量:21

共引文献2

同被引文献22

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部