期刊文献+

循环图的预解Estrada指标 被引量:1

Resolvent Estrada index for circulant graphs
下载PDF
导出
摘要 循环图是一类常用的网络拓扑图.作为一种复杂网络的中心度——图的预解Estrada指标被定义为EEr(G)=∑n i=1(1-λi/n-1)-1,这里,λ1,λ2,…,λn是图G的邻接矩阵的特征值.利用Ramanujan和,借助于欧拉函数和莫比乌斯函数,讨论并得到了循环图的预解Estrada指标的下界以及整循环图的预解Estrada指标的几个计算公式. Circulant graphs are an important class of network topology .Let G be a simple graph with n vertices ,let A be the adjacency matrix of G ,and λ1 ,λ2 ,? ,λn be the eigenvalues of graph G .As a kind of centrality of complex networks ,the resolvent Estrada index of G is defined as EEr (G)= ∑n i=1 1 - λi n -1-1 .By Ramanujan′s sum ,using the Euler function and Mobius function ,we characterize the lower bound of resolvent Estrada index of circulant graph ,and obtain some computational formulas of integral circulant graphs .
作者 周后卿
机构地区 邵阳学院数学系
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2016年第5期517-520,共4页 Journal of Zhejiang University(Science Edition)
基金 湖南省教育厅科学研究项目(15C1235) 邵阳市科技局科技计划项目(2015JH41)
关键词 循环图 整循环图 预解Estrada指标 特征值 circulant graph integral circulant graph resolvent Estrada index eigenvalue
  • 相关文献

参考文献1

二级参考文献10

  • 1Cvetkovic D, Doob M, and Sachs H. Spectra of graphs--Theory and application. Aca- demic Press, New York, 1980.
  • 2Estrada E. Characterization of 3D molecular structure. Chem Phys Lett, 319(2000): 713-718.
  • 3Estrada E and Rodriguez-Valazquez J A. Subgraph centrality in complex networks. Phys Rev E, 71(2005): 056103-1-9.
  • 4Estrada E, Rodrfguez-Valazquez J A and Randic M. Atomic branching in molecules. Int. J Quantum Che., 106(2006): 823-832.
  • 5Gutman I, Estrada E and Rodriguez-Valaizquez J A. On a graph-spectrum-based structure descriptor. Croat Chem Acta, 80(2007): 151-154.
  • 6de la Pefia J A. Gutman I and Rada J. Estimating the Estrada index. Linear Algebra Appl. 427(2007): 70-76.
  • 7Zhou B. On Estrada index. MATCH Commun Math Comput Chem. 60(2008): 485 -492.
  • 8Gutman I. Deng H and Radenkovid S. The Estrada index: an updated survey. In Selected Topics on Applications of Graph Spectra (Cvetkovid D and Gutman I eds.) Math Inst. Beograd, 2011: 155-174.
  • 9Estrada E and Higham D J. Network properties revealed through matrix functions. SIAM Rev. 52(2010): 696-714.
  • 10Benzi M and Boito P. Quadrature rule-based bounds for funcions of adjacency matri- ces. Linear Algebra Apph 433(2010): 637-652.

共引文献2

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部