摘要
工程测量中经常需要实现不同坐标系下成果的相互转换,而高精度的转换参数是完成这一工作的基础。获取基准转换参数的实质就是利用公共点在两套坐标系下的坐标,根据相似变换原理建立误差方程求解。传统的最小二乘(LS)相似变换法只考虑了公共点在一套坐标系下的误差,与实际情况不符。基于此,探讨了坐标参数化的平面基准转换方法,解决了考虑公共点在两套坐标系下坐标都含有误差时高斯-马尔科夫(Gauss-Markov,G-M)模型不成立的问题,以相似变换原理为基础,采取通用的最小二乘方法解算基准转换参数。
The mutual transformation of coordinates in different coordinate systems is a very common geoprocessing task.High-accuracy transformation parameters are the foundation for coordinate transformations,obtained by similarity transformations.Traditional least squares similarity transformation only considers common point coordinates in one coordinate system,and does not conform to many practical situations.Because common points have errors in two coordinate systems,the G-M model is not correct.The coordinates parameterization least squares,method overcomes this problem.Based on the principle of similar transformation,the traditional least squares method is used to calculate plane datum transformation parameters.
作者
王利朋
刘成龙
刘胜
何林烜
WANG Lipeng LIU Chenglong LIU Sheng HE Linxuan(Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China)
出处
《武汉大学学报(信息科学版)》
EI
CSCD
北大核心
2016年第10期1409-1413,共5页
Geomatics and Information Science of Wuhan University
基金
长江学者和创新团队发展计划(IRT13092)
"2011计划"轨道交通安全协同创新中心基金~~
关键词
坐标参数化
基准转换
最小二乘
相似变换
G-M模型
coordinate parameterization
datum transformation
least squares
similarity transformation
G-M model