期刊文献+

基于多层感知器的深度核映射支持向量机 被引量:8

Deep Kernel Mapping Support Vector Machines Based on Multi-layer Perceptron
下载PDF
导出
摘要 为改善支持向量机的性能,从深度学习的角度研究核学习的方法,提出了基于多层感知器的深度核映射支持向量机模型(deep kernel mapping support vector machine,DKMSVM)以及相应的学习算法.该模型首先通过多层感知器学习一个从原始输入空间到合适维度空间的核映射代替传统意义上的核函数,然后直接在合适维度空间使用支持向量机进行分类,而不是采用核技巧进行求解.实验结果验证了DKMSVM的有效性. To improve the performance of support vector machines ( SVMs),from the deep learning 爷 s point of view,a kernel learning method was studied and a deep kernel mapping support vector machine (DKMSVM ) was proposed based on multi-layer perceptron together with the corresponding learning algorithm. Firstly,a kernel mapping from the original input space to a proper dimensional space through a multilayer perceptron instead of a traditional kernel function was researched in this model. Then a SVM was used to classify in the proper dimensional space without kernel tricks. Experimental results demonstrate the effectiveness of DKMSVM.
出处 《北京工业大学学报》 CAS CSCD 北大核心 2016年第11期1652-1661,共10页 Journal of Beijing University of Technology
基金 国家自然科学基金资助项目(61175004) 高等学校博士学科点专项科研基金资助项目(20121103110029)
关键词 核学习 深度学习 多层感知器 支持向量机 kernel learning deep learning multi-layer perceptron support vector machine
  • 相关文献

参考文献4

二级参考文献75

  • 1Xu Z L, Jin R, Zhu S H, Lyu M R, King I. Smooth optimization for effective multiple kernel learning. In: Proceedings of the 24th the Association for the Advancement of Artificial Intelligence. California, America: AAAI, 2010. 543-549.
  • 2Sonnenburg S, R?tsch G, Sch?fer C, Sch?lkopf B. Large scale multiple kernel learning. Journal of Machine Learning Research, 2006, 7(1): 1531-1565.
  • 3Bach F R, Lanckriet G R G, Jordan M I. Multiple kernel learning, conic duality, and the SMO algorithm. In: Proceedings of the 21st International Conference Machine Learning. New York, USA: ACM, 2004. 6-13.
  • 4Xu Z L, Jin R, Yang H Q, King I, Lyu M R. Simple and efficient multiple kernel learning by group lasso. In: Proceedings of the 2010 International Conference Machine Learning. Haifa, Israel: ICML, 2010. 1-8.
  • 5Duan L X, Tsang I W, Xu D. Domain transfer multiple kernel learning. IEEE Transactions on Pattern Analysis Machine Intelligence, 2012, 34(3): 123-131.
  • 6Wang Z, Chen S C, Sun T K. MultiK-MHKS: a novel multiple kernel learning algorithm. IEEE Transactions on Pattern Analysis Machine Intelligence, 2008, 30(2): 12-18.
  • 7Rakotomamonjy A, Bach F, Canu S, Grandvalet Y. SimpleMKL. Journal of Machine Learning Research, 2008, 9(1): 2491-2521.
  • 8Cortes C, Mohri M, Rostamizadeh A. L2 regularization for learning kernels. In: Proceedings of the 25th Conference on Uncertainty Artificial Intelligence. Arlington, Virginia, United States: AUAI Press, 2009. 1-8.
  • 9Yang H Q, Xu Z L, Ye J P, King I, Lyu M R. Efficient sparse generalized multiple kernel learning. IEEE Transactions on Neural Networks, 2011, 22(3): 433-446.
  • 10Hardoon D R, Szedmak S, Shawe-Taylor J. Canonical correlation analysis: an overview with application to learning methods. Neural Computering, 2004, 16(12): 2639-2664.

共引文献28

同被引文献52

引证文献8

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部