期刊文献+

基于质子密度和弛豫时间的大脑MR图像分割新算法 被引量:4

A Novel Approach for Brain MR Image Segmentation Based on Proton Density and Relaxation Time
下载PDF
导出
摘要 目的本文提出一种基于聚类的无监督脑部MR图像分割新算法,有别于传统的基于灰度阈值和一维空间MR图像分割算法。方法首先,估算输入图像的质子密度和弛豫时间;然后,描述输入图像的概率分布;最后,采用基于空间关联决策准则识别最佳分类区域,达到图像分割的效果。结果选用不同分割算法对人工合成图像和临床实例MR图像进行仿真实验。定性分析结果是本文算法的分割图像边缘和细节部分保存的完整清晰;定量评估结果显示基于本文分割算法能获得探测率最大和误报率最小,且在15~30 dB信噪比范围内的戴斯相似性系数和杰卡德相似性系数均最大。结论基于质子密度和弛豫时间的统计算法是一种可行的脑部MR分割算法,在噪声环境、图像灰度不均和临床实例等情况下均表现出强健性,具有较高的临床应用价值。 Objective This paper proposed a brain joint segmentation and classification algorithm based on proton density(ρ) and relaxation time(T_1) and(T_2), instead of the acquired gray level image. MethodsEstimation of proton density and relaxation time was made, then the approach exploited the statistical distribution of the involved signals in the complex domain; at last a novel method for identifying the optimal decision regions was proposed, which could achieve the ideal segmentation results. ResultsBoth simulated and real datasets were evaluated by using different methods. Qualitative analysis showed that edges were well retrieved and small structures were preserved and completely clear. Quantitative evaluation results showed that the proposed segmentation algorithm in this paper could provide the best detection probability and false alarm probability. And it could acquire the maximal Dice coefficient and Jaccard similarity indexes in case of different SNR(15~30 dB). Conclusion The proposed method based on ρ, T_1 and T_2 maps was a feasible segmentation algorithm. And it could provide better robustness in the noise environment, intensity inhomogeneity and clinical applications, which was of great value in clinical popularization.
出处 《中国医疗设备》 2016年第10期25-28,共4页 China Medical Devices
关键词 质子密度 弛豫时间 概率分布 空间关联准则 MR图像分割 proton density relaxation time statistical distribution spatial correlation MR image segmentation
  • 相关文献

参考文献11

二级参考文献75

  • 1李恺,张绍祥,刘正津,谭立文,邱明国,李七渝,张伟国,陈金华.可视化肝脏横断面解剖与MR影像对照研究[J].中国医学影像技术,2005,21(1):138-142. 被引量:18
  • 2陆剑锋,林海,潘志庚.自适应区域生长算法在医学图像分割中的应用[J].计算机辅助设计与图形学学报,2005,17(10):2168-2173. 被引量:69
  • 3侯德鹏,刘政清,路远.综合灰度形态学与模糊熵的红外图像区域分割[J].光电技术应用,2007,22(3):56-60. 被引量:2
  • 4Atkins MS,Mackiewich BT.Fully automatic segmentation of the brain in MRI[J].IEEE Trans Med Imaging,1998,17(1):98.
  • 5Kenneth R.Castleman.Digital Image Processing[M].Upper Saddle River:Prentice Hall.1996.
  • 6Held K,Kops E R,Krause BJ.Markov random field segmentation of brain MR images[J].IEEE Trans.Med.Imag,1997,16(6):878 -886.
  • 7Leemput K V,Maes F,Vandermeulen D.Automated model-based bias field correction of MR image of the brain[J].IEEE Trans.Med.Imag,1999,18:885-896.
  • 8Weian Deng,S.Sitharama Iyengar.A new probabilistic relaxation scheme and its application to edge detection[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,1996,18(4):432-437.
  • 9Guido Valli.Neural networks and prior knowledge help the segmentation of medical image[R].Florence:University of Florence,1994.
  • 10Kass M,Witkin A,Terzopoulos D.Snakes:active contour models[J].IntJ Computer Vision,1988,1(4):321-331.

共引文献45

同被引文献26

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部