期刊文献+

Pyrolysis of CL20-BTF Co-crystal via ReaxFF-lg Reactive Force Field Molecular Dynamics Simulations 被引量:1

CL20/BTF共晶高温热分解ReaxFF/lg分子动力学模拟
下载PDF
导出
摘要 To obtain detailed information on the potential energy, the evolution of species, the initial reaction paths, and thermal decomposition products, we conducted simulations on pyrolysis process of CL20/BTF co-crystal using the ReaxFF/lg reaction force field, with temperature set at 2000 K to 3000 K. With the analysis of evolution curves of potential energy based on exponential function, we obtain the overall characteristic time. Via a description of the total package reaction with classical Arrhenius law, we obtain the activation energy of CL20/BTF co-crystal: Ea=60.8 kcal/mol. Based on the initial path of CL20/BTF co-crystal thermal decomposition we studied, we conclude that N-NO2 bond of CL20 molecules breaks first, working as a dominant role in the initial stage of thermal decomposition under the condition of different temperatures, and that all CL20 molecules completely decompose before BTF molecular regardless of different temperatures. We also find that the main products of CL20/BTF co-crystal are NO2, NO, NO3, HNO, O2, N2, H2O, CO2, N2O, and HONO, etc., on which the temperature forms certain influence.
作者 杨镇 何远航
出处 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2016年第5期557-563,I0001,共8页 化学物理学报(英文)
关键词 ReaxFF/lg Molecular dynamics CL20/BTF co-crystal Reaction mechanism PYROLYSIS ReaxFF/lg 分子动力学 CL20/BTF共晶 反应机理 高温热分解
分类号 O [理学]
  • 相关文献

参考文献27

  • 1A. T. Nielsen, A. P. Chafin, S. L. Christian, D. W. Moore, M. P. Nadler, R. A. Nissan, and D. Vanderah, J. Tetrahedron. 54, 11793 (1998).
  • 2R. L. Simpson, P. A. Urtiew, D. L. Ornellas, G. L. Moody, K. J. Scribner, and D. M. Hoffman, Propell. Explos. Pyrot. 22,249 (1997).
  • 3O. Ordzhonikidze, A. Pivkina, Y. Frolov, N. Muravyev, and K. Monogarob, J. Therm. Anal. Calorim. 105, 529(2011).
  • 4C. Y. Guo, H. B. Zhang, X. C. Wang, and J. Sun, Mater. Rev. 26, 49 (2012).
  • 5C. Y. Zhang, Y. F. Cao, H. Z. Li, Y. Zhou, J. H. Zhou, Tao Ga~, H. W. Zhang, Z. W. Yang, and G. Jiang, CrystEngComm. 15, 4003 (2013).
  • 6O. Bolton and A. J. Matzger, Angew. Chem. Int. Ed. 50, 8960 (2011).
  • 7Z. W. Yang, Y. L. Zhang, H. Z. Li, X. Q. Zhou, F. D. Nie, J. S. Li, and H. Huang, Chin. J. Energ. Mater. 20, 674 (2012).
  • 8O. Bolton, L. R. Simke, P. E. Pagoria, and A. J. Matzger, Cryst. Growth Des. 12, 4311 (2012).
  • 9Y. P. Wang, Z. W. Yang, H. Z. Li, Q. Zhang, J. H. Wang, and Y. C. Liu, Propell. Explos. Pyrot. 39, 590 (2014).
  • 10Z. W. "fang, H. Z. Li, X. Q. Zhou, C. Y. Zhang, H. Huang, J. S. Li, and F. D. Nie, Cryst. Growth Des. 12, 5155 (2012).

共引文献1

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部