期刊文献+

Effcient Removal Phenol Red over Ternary Heterostructured Ag-Bi2MoO6/BiPO4 Composite Photocatalyst

三元异质结构Ag-Bi2MoO6/BiPO4光催化剂高效降解苯酚红
下载PDF
导出
摘要 The fabrication of multicomponent composite systems may provide bene ts in terms of charge separation and the retardation of charge pair recombination. In this work, a ternary heterostructured Ag-Bi2MoO6/BiPO4 composite was fabricated through a low-temperature solution-phase route for the rst time. The XRD, SEM, EDX and XPS results indicated the prepared sample is a three-phase composite of BiPO4, Bi2MoO6, and Ag. Ag nanopar-ticles were photodeposited on the surface of Bi2MoO6/BiPO4 nanosheets, which not only increase visible-light absorption via the surface plasmon resonance, but also serve as good electron acceptor for facilitating quick photoexcited electron transfer. The interface between Bi2MoO6 and BiPO4 facilitates the migration of photoinduced electrons from Bi2MoO6 to BiPO4, which is also conductive to reduce the recombination of electron-holes. Thus, the ternary heterostructured Ag-Bi2MoO6/BiPO4 composite showed signi cant photocatalytic activity, higher than pure Bi2MoO6, BiPO4, and Bi2MoO6/BiPO4. Moreover, the possible photocatalytic mechanism of the Ag-Bi2MoO6/BiPO4 heterostructure related to the band positions of the semiconductors was also discussed. In addition, the quenching effects of di erent scavengers revealed that the reactive ·OH and O2·- play a major role in the phenol red decolorization.
出处 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2016年第5期600-606,I0002,共8页 化学物理学报(英文)
关键词 l-leterostructure Bi2MoO6 BiPO4 AG PHOTOCATALYSIS Visible light 异质结构 钼酸铋 磷酸铋 光催化 可见光
分类号 O [理学]
  • 相关文献

参考文献28

  • 1S. ~kuzumi, T. Kobayashi, and T. Suenobu, Angew Chem. Int. Edit. 50, 728 (2011).
  • 2Y. F. Hu, Y. X. Li, S. Q. Peng, G. X. Lv, and S. B. Li Acta Phys. -Chim. Sin. 24, 2071 (2008).
  • 3D. Xu, A. M. Gao, and W. L. Deng, Acta Phys. -Chim. Sin. 24, 1219 (2008).
  • 4B. X. Li, Y. F. Wang, and T. X. Liu, Aeta Phys. -Chim. Sin. 27, 2946 (2011).
  • 5J. Y. He, W. M. Wang, F. Long, Z. G. Zou, Z. Y. b-ha, and Z. Xu, Mater. Sei. Eng. B 177, 967 (2012).
  • 6G. H. Tian, Y. J. Chen, X. Y. Meng, J. Zhou, W. Zhou, K. Pan, C. G. Tian, Z. Y. Ren, and H. G. Fu, ChemPlusChem 78, 117 (2013).
  • 7Y. Yan, S. F. Sun, Y. Song, X. Yan, W. S. Guan, X. L. Liu, and W. D. Shi, J. Hazard. Mater. 250/251, 106 (2013).
  • 8Y. Wang, H. X. Dai, J. G. Deng, Y. X. Liu, Z. X. Zhao, X. W. Li, and H. Arandiyan, Chem. Eng. J. 226, 87 (2013).
  • 9W. Z. Yin, W. Z. Wang, and S. M. Sun, Catal. Com- mun. 11,647 (2010).
  • 10H. G. Yu, Z. F. Zhu, J. H. Zhou, J. Wang, J. Q. Li, and Y. L. Zhang, Appl. Surf. Sci. 265, 424 (2013).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部