期刊文献+

基于小波钝化的嵌入式图像处理算法研究 被引量:2

Embedded image processing algorithm based on wavelet passivation
下载PDF
导出
摘要 注塑模具保护系统普遍采用模板匹配图像处理算法,其存在实时性不强、精确度不高,以及对运行环境要求严苛等问题。论文提出了基于小波钝化的嵌入式模具保护图像处理算法,该算法运行于嵌入式平台,采用小波钝化的方法凸显待测残留物,无需进行模板匹配、图像配准和较正;提出了基于像素值统计的支持向量机检测算法,以适应嵌入式平台内存小的特点;引入支持向量机分类,有效解决了图像偏移带来的误差问题。MATLAB实验测得,该算法的模腔残留物检测平均准确率为85.71%,残留物检出平均耗时0.910s。结果表明,采用小波钝化和支持向量机的嵌入式图像处理算法,无论在算法检测精度还是算法响应速度方面均优于以灰度共生矩阵匹配算法和差影法为代表的图像匹配算法。 Injection mold protection systems generally use template matching image processing algorithms , which have shortcomings of poor real-time , low accuracy, and stringent requirement of operating environment. This paper presents an embedded mold protection image processing algorithm based on wavelet passivation. This algorithm runs on an embedded platform and highlights residues using the wavelet passivation method without template m atching, image registration and correction. A SVM(Support Vector Machine) detection algorithm based on the statistic of pixel values is proposed to make it adapt to the small memory of the embedded platform . The SVM classification is introduced as an effective solution to effectively solve the error problem caused by image shift. Experimental results by MATLAB show that for residues detection, the proposed algorithm achieves an average accuracy rate of 85.71 % and average detection time of 0.910 s. The results also show that, this embedded image processing algorithm using wavelet passivation and SVM outperforms other image template algorithms represented by gray level co-occurrence matrix algorithms and difference image algorithms in terms of both detection accuracy and response speed.
出处 《液晶与显示》 CAS CSCD 北大核心 2016年第11期1085-1091,共7页 Chinese Journal of Liquid Crystals and Displays
基金 广东高校省级重点平台和重大科研项目(No.2015KTSCX169) 中山市社会公益科技研究重大项目(No.2016B2119)~~
关键词 模具保护 图像处理 小波钝化 支持向量机 mold protection image processing wavelet passivation SVM
  • 相关文献

参考文献6

二级参考文献70

  • 1白雪冰,王克奇,王辉.基于灰度共生矩阵的木材纹理分类方法的研究[J].哈尔滨工业大学学报,2005,37(12):1667-1670. 被引量:88
  • 2张占鹏,苏秀琴,吕帅华.一种基于双阈值的实时图像灰度级压缩方法[J].科学技术与工程,2006,6(2):192-194. 被引量:2
  • 3吴晴,周健.嵌入式图像采集系统的设计与实现[J].电子测量技术,2007,30(6):89-92. 被引量:23
  • 4W.Wrolf,B.Ozer,T.Lv.Smart cameras as embedded systems[C].IEEE computer,September,2006,35(9):48-53.
  • 5Mei Yi, Wu Daolin. Research on the quantification of defecls in injection molded parts based on digital image processing[ C ]// IEEE Int' 1 Conf on Machine Learning and Cybernetics, BaoMing, China,2009 : 1210 -1213.
  • 6ABDULLAH-AL-WADUD M, HASANUL KABIR M, ALI AKBER DEWAN M, et al.. A dynamic histogram equalization for image contrast enhancement[J]. IEEE Transactions on Consumer Electronics, 2007, 53(2):593-601.
  • 7YANG F, WU J. An improved image contrast enhancement in multiple-peak images based on histogram equalization[J]. IEEE Conference Publications, 2010, 1:346-349.
  • 8CELIK T, TJAHJADI T. Automatic image equalization and contrast enhancement using gaussian mixture modeling[J]. IEEE Transactions on Image Processing, 2012, 21(1):145-156.
  • 9WELLING P, KIM S H, CHO S B. Brightness preserving contrast enhancement using polynomial histogram amendment. IEEE Soc Design Conference, Jeju Island, Korea, 4-7 November, 2012.
  • 10CHEN H O, KONG N S P, IBRAHIM H. Bi-histogram equalization with a plateau limit for digital image enhancement[J]. IEEE Consumer Elevtronics, 2009, 55(4):2072-2087.

共引文献116

同被引文献19

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部