期刊文献+

基于符号函数的多搜索策略人工蜂群算法 被引量:11

Multi-search strategy of artificial bee colony algorithm based on symbolic function
原文传递
导出
摘要 针对人工蜂群算法传统搜索策略在求解高维复杂函数时存在收敛速度较慢、容易陷入局部最优的缺陷,提出一种基于符号函数的多搜索策略人工蜂群算法.该算法将几种不同的搜索策略借助符号函数进行融合,在进化过程中充分发挥各搜索策略的优势,可以较好地平衡算法的局部搜索能力和全局搜索能力,同时基于目标函数值进行选择寻优.通过对16个基准函数进行的仿真实验以及与其他改进算法的比较,表明了所提出的算法具有较快的收敛速度和较高的求解精度. The traditional search strategy of the artificial bee colony(ABC) algorithm exists some disadvantages when solving complex functions with high dimensions, such as that the convergence speed is not fast enough, easy to fall into local optimum. In order to solve these issues, the multi-search strategy of the artificial bee colony(MSSABC) algorithm based on the symbolic function is presented. The new algorithm uses the symbolic function to fuse several different search strategies,makes full use of the advantages of the different search strategies during evolution to balance the local search ability and the global search ability, and selects the best solution based on the objective function value. Experiments are conducted on a set of 16 benchmark functions, and the results show that the proposed algorithm has fast convergence and high accuracy than several other ABC-based algorithms.
出处 《控制与决策》 EI CSCD 北大核心 2016年第11期2037-2044,共8页 Control and Decision
基金 国家自然科学基金项目(71503132) 江苏省高校自然科学研究项目(14KJD110005 14KJB110017)
关键词 人工蜂群算法 符号函数 搜索策略 artificial bee colony algorithm symbolic function search strategy
  • 相关文献

参考文献20

  • 1Karaboga D. An idea based on honey bee swarm for numerical optimization[R]. Kayseri: Erciyes University, 2005.
  • 2Karaboga N. A new design method based on artificial bee colony algorithm for digital IIR filters[J]. J of the Franklin Institute, 2009, 346(4): 328-348.
  • 3Singh A. An artificial bee colony algorithm for the leaf-constrained minimum spanning tree problem[J]. Applied Soft Computing, 2009, 9(2): 625-631.
  • 4Tasgetiren M F, Pan Q K, Suganthan P N, et al. A discrete artificial bee colony algorithm for the total flowtime minimization in permutation flow shops[J]. Information Sciences, 2011, 181(16): 3459-3475.
  • 5SzetoW,Wu Y, Ho S C. An artificial bee colony algorithms for the capacitated vehicle routing problem[J]. European J of Operational Research, 2011, 215(1): 126-135.
  • 6Kang F, Li J L, Ma Z Y. Rosenbrock artificial bee colony algorithm for accurate global optimization of numerical functions[J]. Information Sciences, 2011, 181(16): 3508-3531.
  • 7Zhu G P, Kwong S. Gbest-guided artificial bee colony algorithm for numerical function optimization[J]. Applied Mathematics and Computation, 2010, 217(7): 3166-3173.
  • 8Gao W F, Liu S Y. A modified artificial bee colony algorithm[J]. Computer & Operations Research, 2012, 39(3): 687-697.
  • 9Akay B, Karaboga D. A modified artificial bee colony algorithm for real-parameter optimization[J]. Information Sciences, 2012, 192(1): 120-142.
  • 10Gao W F, Liu S Y, Huang L L. A global best artificial bee colony algorithm for global optimization[J]. J of Computational and Applied Mathematics, 2012, 236(11): 2741-2753.

二级参考文献79

  • 1STORN R,PRICE K.Differential evolution-a simple and efficient heuristic for global optimization over continuous space[J].Journal of Global Optimization,1997,11(4):341-359.
  • 2QIN A K,HUANG V L,SUGANTHAN P N.Differential evolution algorithm with strategy adaptation for global numerical optimization[J].IEEE Transactions on Evolution Computation,2009,13(2):398-417.
  • 3MALLIPEDDI R,SUGANTHAN P N,PAN Q K,et al.Differential evolution algorithm with ensemble of parameters and mutation strategies[J].Applied Soft Computing,2011,11(2):1679-1696.
  • 4WANG Y,CAI Z,ZHANG Q.Differential evolution with composite trial vector generation strategies and control parameters[J].IEEE Transactions on Evolutionary Computation,2011,15(1):55-66.
  • 5STORN R.On the usage of differential evolution for function optimization[C]//Proceedings of the 1996 Biennial Conference of the North American on Fuzzy Information Processing Society.Washington,D.C.,USA:IEEE,1996:519-523.
  • 6R(O)NKK(O)NEN J,KUKKONEN S,PRICE K V.Real-parameter optimization with differential evolution[C]//Proceedings of IEEE Congress on Evolutionary Computation.New Work,N.Y.,USA:IEEE,2005:506-513.
  • 7G(A)MPERLE R,M(U)LLER S D,KOUMOUTSAKOS P.A parameter study for differential evolution[C]// Proceedings of International Conference on Advances in Intelligent Systems,Fuzzy Systems,Evolutionary Computation.Interlaken,Switzerland:WSEAS Press,2002:293-298.
  • 8NOMAN N,IBA H.Accelerating differential evolution using an adaptive local search[J].IEEE Transaction on Evolutionary Computation,2008,12(1):107-125.
  • 9ZHANG J Q,SANDERSON A C.JADE:adaptive differential evolution with optional external archive[J].IEEE Transactions on Evolutionary Computation,2009,13(5):945-958.
  • 10BREST J,GREINER S,BOSKOVIC B,et al.Self-adapting control parameters in differential evolution:a comparative study on numerical benchmark problems[J].IEEE Transactions on Evolution Computation,2006,10(6):646-657.

共引文献53

同被引文献49

引证文献11

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部