期刊文献+

基于最大分布加权均值嵌入的领域适应学习 被引量:3

Domain adaptation learning based on maximum distribution weighted mean discrepancy
原文传递
导出
摘要 最大均值差异忽略了单个样本对全局度量贡献的差异性.为此,提出一种最大分布加权均值差异度量方法,采用白化余弦相似性度量为源域和目标域的所有样本设计相应的分布权重,使得每个样本的分布差异信息在全局度量中均得以体现.进一步,结合联合分布调整思想,提出一种基于最大分布加权均值嵌入的领域适应学习算法.实验结果表明,与典型的迁移学习和无迁移学习算法相比,所提出算法在不同类型跨领域图片数据集上均具有较高的分类精度. Maximum mean discrepancy neglects the difference of contribution of each sample to the global measure.Therefore, a kind of maximum distribution weighted mean discrepancy(MDWMD) methed is proposed, where the whitened cosine similarity is used to design distribution weights for all samples from the source and the target domains. Further,based on the idea of joint distribution adaptation, a domain adaptation learning algorighm based on MDWMD is proposed.Experimental results show that, compared with the typical transfer learning and non-transfer learning algorithms, the proposed algorithm has higher classification accuracy on different types of cross-domain image datasets.
出处 《控制与决策》 EI CSCD 北大核心 2016年第11期2083-2089,共7页 Control and Decision
基金 国家自然科学基金项目(61273143 61472424) 中央高校基本科研业务费专项资金项目(2013RC10 2013RC12 2014YC07)
关键词 领域适应学习 最大均值差异 分布权重 白化余弦相似性 联合分布调整 domain adaptation learning maximum mean discrepancy distribution weight whitened cosine similarity joint probaliality adaptation
  • 相关文献

参考文献17

  • 1许敏,王士同,顾鑫.TL-SVM:一种迁移学习算法[J].控制与决策,2014,29(1):141-146. 被引量:14
  • 2倪彤光,王士同.适用于不确定类标签数据学习的迁移支持向量机[J].控制与决策,2014,29(10):1751-1757. 被引量:3
  • 3顾鑫,王士同,许敏.领域自适应的最小包含球设计方法[J].控制与决策,2013,28(2):177-182. 被引量:4
  • 4Ben-David S, Blitzer J, Crammer K, et al. Analysis\ of representations for domain adaptation[C]. Proc of Advances in Neural Information Processing Systems. Massachusetts: MIT Press, 2007: 137-144.
  • 5Pérez-Cruz F. Kullback-Leibler divergence estimation of continuous distributions[C]. Proc of IEEE Int Symposium on Information Theory. Piscataway: IEEE Press, 2008: 1666-1670.
  • 6Borgwardt K M, Gretton A, Rasch M J, et al. Integrating structured biological data by kernel maximum mean discrepancy[J]. Bioinformatics, 2006, 22(14): 49-57.
  • 7Si S, Tao D, Geng B. Bregman divergence-based regularization for transfer subspace learning[J]. IEEE Trans on Knowledge and Data Engineering, 2010, 22(7): 929-942.
  • 8Gong B, Shi Y, Sha F, et al. Geodesic flow kernel for unsupervised domain adaptation[C]. Proc of IEEE Conf on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2012: 2066-2073.
  • 9Pan S J, Kwok J T, Yang Q. Transfer learning via dimensionality reduction[C]. Proc of the 23rd AAAI Conf on Artificial Intelligence and the 20th Innovative Applications of Artificial Intelligence Conf. Washington DC: AAAI Press, 2008: 667-682.
  • 10Pan S J, Tsang I W, Kwok J T, et al. Domain adaptation via transfer component analysis[J]. IEEE Trans on Neural Networks, 2011, 22(2): 199-210.

二级参考文献99

  • 1代建华,潘云鹤.一种基于分类一致性的决策规则获取算法[J].控制与决策,2004,19(10):1086-1090. 被引量:16
  • 2何明,李博,马兆丰,傅向华.粗糙集理论框架下的神经网络建模研究及应用[J].控制与决策,2005,20(7):782-785. 被引量:10
  • 3邓乃阳,田英杰.数据挖掘中的新方法-支持向量机.科学出版社,北京,2004.
  • 4边肇祺 张学工 等.模式识别[M].北京:清华大学出版社,2001..
  • 5Ozawa S, Roy A, Roussinov D. A multitask learning model for online pattern recognition. IEEE Transactions on Neural Networks, 2009, 20(3): 430-445.
  • 6Xu Z J, Sun S L. Multi-source Transfer Learning with Multi-view Adaboost [Online], available: http://www.cst. ecnu.edu.cn/ slsun/pubs/MvTransfer.pdf, November 7-9, 2006.
  • 7Pan S J, Yang Q. A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359.
  • 8Quanz B, Huan J. Large margin transductive transfer learning. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management (CIKM). New York, USA: ACM, 2009. 1327-1336.
  • 9Zhang D, He J R, Liu Y, Si L, Lawrence R D. Multi-view transfer learning with a large margin approach. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD). New York, USA: ACM, 2011. 1208-1216.
  • 10Xu Z J, Sun S L. Multi-view Transfer learning with adaboost. In: Proceedings of the 23rd IEEE International Conference on Tools with Artificial Intelligence (ICTAI). New York, USA: IEEE, 2011. 399-402.

共引文献31

同被引文献6

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部