期刊文献+

基于随机森林的航空器到达时刻预测 被引量:4

Arrival Flight Time Prediction Based on OLS-RBF Neural Networks
下载PDF
导出
摘要 航空器到达时刻(ETA)预测是进场排序与调度的基础,因此进场飞行时间的快速与准确预测显得尤为重要。通过分析航班信息、天气信息以及空中交通信息,基于随机森林算法构建了航空器到达时刻预测模型。选取上海浦东机场进场航班进行仿真验证,仿真结果表明,预测模型可以实现航空器到达时刻的快速与准确预测。 Estimated Time of Arrival(ETA) plays a great role in arrival sequencing and scheduling, therefore it is particularly important to predict the arrival flight time quickly and accurately. Through the indepth analysis of flights data, weather information and air traffic flow, an estimated time of arrival prediction model was constructed based on Random Forest method. Taking the arrival flights to Shanghai Pudong Airport as examples, the simulation was carried out. And the simulation result indicated that the model was able to predict the estimated time of arrival quickly and accurately.
出处 《航空计算技术》 2016年第5期38-41,共4页 Aeronautical Computing Technique
基金 国家自然科学基金项目资助(71401072) 江苏省自然科学基金项目资助(BK20130814) 南京航空航天大学研究生创新基地开放基金项目资助(kfjj20160707)
关键词 空中交通管理 随机森林 预计到达时刻 预测 air traffic management random forest estimated time of arrival prediction proposed
  • 相关文献

参考文献3

二级参考文献44

  • 1RUIZ S, PIERA M, POZO I. A medium term conflict detection and resolution system for terminal maneuvering area based on spatial data and 4D trajectories[J]. Transportation Research: Part C, 2013, 26 : 396-417.
  • 2HANCERLIOGULLARI G, RABADI G, AL-SALEM A H, et al. Greedy algorithms and metaheuristics for a multiple runway combined arrival-departure aircraft sequencing problem[J]. Journal of Air Transport Management, 2013, 32: 39-48.
  • 3ZuNIGA C A, PIERA M A, RUIZ S. A CD&CR causal model based on path shortening/path stretching techniques[ J ]. Transportation Research : Part C, 2013, 33: 238-256.
  • 4SCHROEDER J A. A perspective on NASA Ames air traffic management research[ C ] // 9th AIAA Aviation Technology, Integration, and Operations Conference (ATIO). [S.l. ] : AIAA, 2009: 7054-1-7054-16.
  • 5BAR-SHALOM Y, LI X R. Estimation with applications to tracking and navigation: theory algorithms and software[ M]. [ S. l. ] : John Wiley Sons, Inc., 2001 : 466-476.
  • 6HWANG I. Air traffic surveillance and control using hybrid estimation and protocol-based conflict resolution [ D ]. Stanford : Stanford University, 2003.
  • 7SEAH C E, HWANG I. State estimation for stochastic linear hybrid systems with continuous-state-dependent transitions: an IMM approach[J]. IEEE Transactions on Aerospace and Electronics Systems, 2009, 45 ( 1 ) : 376-392.
  • 8SEAH C E, HWANG I. Algorithm for performance analysis of the IMM algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47 ( 2 ) : 1114-1124.
  • 9FUKUDA Y, SHIRAKAWA M, SENOGUCHI A. Development of trajectory prediction model [ C ]//ENRI International Workshop on ATM/CNS (EIWAC). Tokyo: [s. n. ], 2010: 95-100.
  • 10FAA, Eurocontrol. Common trajectory prediction structure and terminology in support of SESAR & NextGen[R]. Bretigny: EEC, 2010.

共引文献46

同被引文献26

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部