期刊文献+

基于深度信息融合的小电流接地故障选线 被引量:3

Fault line selection based on depth information fusion for small current grounding system
下载PDF
导出
摘要 基于信息融合技术的小电流接地故障选线方法当信息融合效率低时,将直接影响接地选线的准确性。分别利用傅里叶变换(FFT)和经验模态分解(EMD)对稳态和暂态的零序分量特征进行分析,通过建立故障测度函数,计算出线路故障测度;利用信息增益度,建立各种选线方法的故障测度;利用线路和方法故障测度得到最终的样本故障测度。把样本故障测度作为特征输入量,利用单纯形法(SM)优化参数的最小二乘支持向量机(LSSVM)算法进行深度信息融合选线。仿真结果表明上述方法应用于选线中具有很高的准确率和灵敏度。 When the fusion efficiency is low, the method based on depth information fusion technology will directly affect the accuracy of the grounding line selection for small current. The EEMD and FFT are used respectively to analyze the zero-sequence component of steady-state and transient, this paper sets up faulty measurement function to calculate fault measures of feeders and establishes fault measures of different methods based on information gain. Finally, sample fault measures are founded by fusing the two fault measures. Then, the depth information fusion line selection is conducted by using the least squares support vector machine (LSSVM) of the simplex optimum-seeking algorithm and the information gain degree with the sample fault measures as characteristic input. Simulation results show that the above method is of high accuracy and sensitivity in fault line selection.
出处 《电测与仪表》 北大核心 2016年第20期20-25,共6页 Electrical Measurement & Instrumentation
关键词 信息增益度 故障选线 最小二乘支持向量机 信息融合 information gain, fault line selection, LSSVM, information fusion
  • 相关文献

参考文献18

二级参考文献153

共引文献605

同被引文献32

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部