期刊文献+

深度卷积神经网络的多GPU并行框架

Multi-GPU Parallel Framework of Deep Convolutional Neural Networks
下载PDF
导出
摘要 近年来,深度卷积神经网络在图像识别和语音识别等领域被广泛运用,取得了很好的效果。深度卷积神经网络是层数较多的卷积神经网络,有数千万参数需要学习,计算开销大,导致训练非常耗时。针对这种情况,本文提出深度卷积神经网络的多GPU并行框架,设计并实现模型并行引擎,依托多GPU的强大协同并行计算能力,结合深度卷积神经网络在训练中的并行特点,实现快速高效的深度卷积神经网络训练。 In recent years, deep convolutional neural network is widely used in the fields of image recognition and speech recogni- tion, and achieves good results. Deep convolutional neural networks are the convolutional neural networks with multiple layers, tens of millions of parameters need to be learned, and computational overhead is large, so the training is very time-consuming. In view of this situation, we propose a muhi-GPU parallel framework of deep convolutional neural networks, design and implement model parallel engine, relying on the powerful collaborative parallel computing ability of muhi-GPU, combined with the parallel characteristics of deep convolutional neural networks in training, to achieve fast and efficient deep convolution neural networks training.
作者 杨宁
出处 《计算机与现代化》 2016年第11期95-98,共4页 Computer and Modernization
基金 国家自然科学基金青年基金资助项目(61202136)
关键词 深度卷积神经网络 GPU 并行框架 图像识别 大数据 deep convolutional neural networks graphic processing unit parallel framework image recognition big data
  • 相关文献

参考文献14

  • 1LeCun Y, Boser B, Denker J S, et al. Back propagation applied to handwritten Zip code recognition [ J ]. Neural Computation, 1989,1 (4) :541-551.
  • 2Hinton G E, Osindero S, Teh Y W. A fast learning algo-rithm for deep belief nets [ J ]. Neural Computation, 2006, 18(7) :1527-1554.
  • 3Krizhevsky A, Sutskever I, Hinton G E. ImageNet classifi- cation with deep convolutional neural networks[ C ]//Neu- ral Information Processing Systems Conference and Work- shop (NIPS). 2012 : 1106-1114.
  • 4Chen Xueyun, Xiang Shiming, Liu Cbeng-lin, et al. Vehi- cle detection in satellite images by hybrid deep convolution- al neural networks [ J ]. IEEE Geoscienee and Remote Sensing Letters, 2014,11 (10) : 1797-1801.
  • 5Abdel-Hamid O, Mohamed A, Hui Jiang, et al. Applying convolutional neural networks concepts to hybrid NN-HMM model for speech recognition[ C ]//2012 IEEE Internation- al Conference on Acoustics, Speech and Signal Processing ( ICASSP). 2012:4277-4280.
  • 6Zhang Cha, Zhang Zhengyou. Improving multi-view face detection with muhi-task deep convolutional neural net- works[ C]// 2014 IEEE Winter Conference on Applica- tions of Computer Vision (WACV). 2014 : 1036-1041.
  • 7Dahl G E, Dang Yu, Li Deng, et al. Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition [ J ]. IEEE Transactions on Audio, Speech, and Language Processing, 2012,20( 1 ) :30-42.
  • 8LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition [ J ]. Proceedings of the IEEE, 1998,86(11) :2278-2324.
  • 9段宝彬,韩立新.改进的深度卷积网络及在碎纸片拼接中的应用[J].计算机工程与应用,2014,50(9):176-181. 被引量:14
  • 10邢健飞,罗志增,席旭刚.基于深度神经网络的实时人脸识别[J].杭州电子科技大学学报(自然科学版),2013,33(6):107-110. 被引量:6

二级参考文献26

  • 1HAIFENG LI, THIERRY ARTIERES, PATRICK GALLINARI. Data Driven Design of an ANN/HMM System for On-Line Unconstrained Handwritten Character Recognition [J]. Proc of the Fourth IEEE Int'l Conf on Multimodat Interfaces, 2002:149-154.
  • 2LIXIAO GE, SHAO LI HONG, LI NA. The Realization of Artificial Neural Network BP Algorithm [J]. Computer Knowledge and Technology,2008(5) :921-923.
  • 3LeCun Y,Boser B,Denker J S,et al.Backpropagation applied to handwritten zip code recognition[J].Neural Computation,1989,1(4):541-551.
  • 4Krizhevsky A,Sutskever I,Hinton G E.ImageNet classification with deep convolutional neural networks[C]//Neural Information Processing Systems Conference and Workshop(NIPS),Lake Tahoe,Nevada,2012:1106-1114.
  • 5Hinton G E,Osindero S,Teh Y W.A fast learning algorithm for deep belief nets[J].Neural Computation,2006,18(7):1527-1554.
  • 6Vincent P,Larochelle H,Lajoie I,et al.Stacked denoising autoencoders:learning useful representations in a deep network with a local denoising criterion[J].Journal of Machine Learning Research,2010,11(12):3371-3408.
  • 7Nayak N,Chang H,Borowsky A,et al.Classification of tumor histopathology via sparse feature learning[C]//The10th International Symposium on Biomedical Imaging(ISBI).San Francisco:IEEE,2013:410-413.
  • 8MacQueen J B.Some methods for classification and analysis of multivariate observations[C]//Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability.Berkeley:University of California Press,1967:281-297.
  • 9Cao Shengjiao,Liu Hairong,Yan Shuicheng.Automated assembly of shredded pieces from multiple photos[C]//IEEE International Conference on Multimedia&Expo,2010.
  • 10Masci J,Meier U,Ciresan D.Stacked convolutional autoencoders for hierarchical feature extraction[C]//Proceedings of the 21st International Conference on Artificial Neural Networks and Machine Learning(ICANN).Berlin Heidelberg:Springer,2011:52-59.

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部