摘要
该文通过将差动式无人地面移动小车和四旋翼无人直升机的数学模型分别简化为一阶积分器和四阶积分器,考察了一阶和四阶自主体构成的混合阶多自主体系统的一致性问题。分别为一阶自主体和四阶自主体设计了静态一致性算法,并利用代数图论和矩阵分析法得到多自主体系统在固定有向拓扑结构下渐近收敛一致的充要条件。通过构造Lyapunov-Krasovskii泛函,得到多自主体系统在时变输入时延约束下渐近收敛一致的充分条件,并以线性矩阵不等式表示。仿真结果验证了结论的有效性。
By simplifying the mathematical models of differential unmanned ground vehicles and quadrotor unmanned aerial vehicles as single integrators and fourth-order integrators respectively,the consensus problem is investigated for the mixed-order multi-agent systems composed of first-order agents and fourth-order agents in this paper. Stationary consensus algorithms are designed for the firstorder agent and the fourth-order agent respectively. Under the fixed directed topology,the necessary and sufficient condition is obtained for the multi-agent systems converging to an asymptotic consensus by using the algebraic graph theory and the matrix theory. By constructing the Lyapunov-Krasovskii functional,the sufficient consensus condition being expressed as a linear matrix inequality is obtaine for multi-agent systems subject to time-varying input delay. Simulation results verify the effectivenes of the theoretical findings.
作者
罗京
刘成林
刘飞
Luo Jing Liu Chenglin Liu Fei(Key Laboratory of Advanced Process Control for Light Industry ( Ministry of Education), Jiangnan University, Wuxi 214122, China)
出处
《南京理工大学学报》
EI
CAS
CSCD
北大核心
2016年第5期626-634,共9页
Journal of Nanjing University of Science and Technology
基金
国家自然科学基金(61473138
61104092)
江苏省自然科学基金(BK20151130)
江苏省"六大人才高峰"资助项目(2015-DZXX-011)