期刊文献+

智能手机交互界面图标扁平化设计与用户接受度分析 被引量:4

Analysis on the flat design of the interactive interface of smart phone from the perspective of user acceptance
原文传递
导出
摘要 针对智能手机图标扁平化设计中存在的不足,从用户视角研究扁平化设计与用户接受度之间的关系。从形态和效果角度提取图标特征,以整体抽象或局部变形为基础,叠加光影和色彩,构造样本。利用调查问卷法、单因素方差分析法获取和分析用户接受度数据。综合扁平化效果直接受制于整体抽象度和局部变形度。多数用户更易接受整体抽象度中等偏简约,局部变形度中等偏简约,色彩丰富度略高和光影复杂度偏低的设计。年龄对用户接受度略有影响。可对智能手机交互界面图标的扁平化设计提供参考,有利于均衡整体一致性。 For the problems of flat design on the icons in intelligent mobile phone, the relationship between fiat design and user acceptance is discussed from user's perspective. Firstly, the icon characteristics are extracted from their morphology and effects, and based on the degree of whole abstraction or local deformation, the new samples are constructed by superimposing light and shade effect on colors. Secondly, questionnaires are applied to capture the data of user acceptance, and one-way ANOVA analysis is used to analyze them. The experimental results showed that the integral effect of fiat design is affected directly by the whole abstraction or local deformation, and most users preferred the effect which is characterized by medium to simple whole abstraction, medium to simple local deformation, abundant color and lower complexity of light and shade effects. Age has slight impact on user acceptance. The research provides a reference for fiat design of user interface, which can balance the overall consistency in icon design.
作者 杨韬 刘博娅
出处 《辽宁工程技术大学学报(社会科学版)》 2016年第6期948-952,共5页 Journal of Liaoning Technical University(Social Science Edition)
基金 国家科技支撑计划项目(2013BAH12F00) 辽宁工程技术大学第二批市场调研基金(13-T-034)
关键词 智能手机 交互界面 图标 扁平化设计 用户接受度 intelligent mobile hone interactive interface icon flat design user acceptance
  • 相关文献

参考文献7

二级参考文献43

  • 1汪培庄.因素空间与因素库[J].辽宁工程技术大学学报(自然科学版),2013,32(10):1297-1304. 被引量:60
  • 2李道芳.扁平化管理与管理的变革[J].合肥学院学报(社会科学版),2005,22(4):104-106. 被引量:15
  • 3杭问.《设计的善意》,广西师范大学出版社,桂林,2011.
  • 4王明旨."朴素的设计",《装饰》,1995.1.
  • 5JOHNSONJ.GUI设计禁忌2.0[M].盛海艳,译.北京:机械工业出版社,2009.
  • 6AQuinlan J R.Induction of decision trees[J].Machine Iaming,1986,1(1): 81-i06.
  • 7DeJong K A,Spears W M,Gordon D F.Using genetic algorithms forconcept learning[J].Machine Learning, 1993,13:161 - 188.
  • 8Pawlak Z.Rough classification[J]. International Journal of Man-Machine Studies,1984,27(20):469-483.
  • 9Cover T M,Hart P E.Nearest neighbou pattern classification[J].IEEE Transactions on Information Theory, 1967,13( 1):21-27.
  • 10[ Amodt A,Plaza E.Case-based reasoning: foundational issues, methodological variations and system approaches[J].Artiflcial Intelligence Communications, 1994,7(1):39-59.

共引文献114

同被引文献23

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部