期刊文献+

基于曲梁模型的大展弦比大柔性机翼颤振分析 被引量:2

A Method for Flutter of the Very Flexible Wing with High-Aspect-Ratio Based on Curve Beam Model
下载PDF
导出
摘要 提出一种大展弦比大柔性机翼颤振分析的方法。该方法首先引入准模态假设,将气动载荷作用下发生大静变形的大展弦比大柔性机翼视为一根变曲率曲梁,并将其离散为一系列常曲率曲梁单元,利用机翼静变形结果,通过多项式插值获得各曲梁单元的平均曲率。其次,在曲梁单元内,利用曲梁振动微分方程和Therdorson非定常气动力模型建立曲梁单元的颤振微分方程。然后,运用传递函数法,将曲梁单元的颤振微分方程转换为状态空间形式,并依照有限元组集的思想形成机翼整体平衡方程。最后,通过求解特征值问题获得机翼的颤振速度和颤振频率。通过与已有文献结果的对比,验证了新方法的正确性和有效性。 A method for flutter of the very flexible wing with a high-aspect-ratio is developed. Firstly,the very flexible wing subjected to aeroelastic load will undergo a large deformation. So the deformed wing can be regarded as a curve beam and divided into a couple of curve beam elements. The mean curvature of every beam element is obtained by mean of polynomial interpolation method. For each element,the flutter differential equations is established by combining the differential equations of the constant curvature beam vibration and the Therdorson' unsteady aerodynamics model. Then,using the distributed transfer function method and the finite element method,the equilibrium equations of the whole wing are obtained. Finally,the wing flutter was carried out by solving a eigenvalue problem. The results are good agreement to the literature solutions and indicate that the present method is accurate and efficient.
作者 段静波 周洲 江涛 Duan Jingbo Zhou Zhou Jiang Tao(School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China Department of UAV Engineering, Ordnance Engineering College, Shijiazhuang 050003, China)
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2016年第5期774-782,共9页 Journal of Northwestern Polytechnical University
基金 中国博士后基金(2014M560803)资助
关键词 大展弦比 大柔性机翼 曲梁 非定常气动力 颤振 high-aspect-ratio very flexible wing curve beams unsteady aerodynamics flutter
  • 相关文献

参考文献5

二级参考文献23

  • 1周凌远,李乔.基于UL法的CR列式三维梁单元计算方法[J].西南交通大学学报,2006,41(6):690-695. 被引量:20
  • 2Park Y P. Dynamic stability of a free Timoshenko beam under a controlled follower force[J]. Journal of Sound and Vibration, 1987, 113(3): 407 -415.
  • 3Zuo Q H, Schreyer H L. Flutter and divergence instability of non-conservative beams and plates[J]. International Journal of Solids and Structures, 1996, 33 (9): 1355- 1367.
  • 4Como M. Lateral buckling of a cantilever subjected to a transverse force[J]. International Journal of Solids and Structures, 1966, 2(3): 515-523.
  • 5Hodges D H. Lateral-torsional flutter of a deep cantilever loaded by a lateral follower force at the tip[J].Journal of Sound and Vibration, 2001, 247(1): 175-183.
  • 6Feldt W T, Herrmann G, Bending-torsional flutter of a cantilevered wing containing a tip mass and subjected to a transverse follower force[J].Journal of the Franklin In stitute, 1974, 297(6): 467-478.
  • 7Hodges D H, Patil M J, Chae S. Effect of thrust on bending-torsion flutter of wings [J].Journal of Aircraft, 2002, 39(2): 371-376.
  • 8Fazelzadeh S A, Mazidi A, Kalantari H. Bending-torsional flutter of wings with an attached mass subjected to a fol lower force[J]. Journal of Sound and Vibration, 2009 323(1-2): 148-162.
  • 9Xie C C, Leng J Z, Yang C. Geometrical nonlinear aeroelastic stability analysis of a composite high-aspect-ratio wing[J]. Shock and Vibration, 2008, 15(3-4): 325 333.
  • 10Zhang J, Xiang J W. Preliminary validation of a coupled model of nonlinear aeroelasticity and flight dynamics for HALE aircraft[C]//3rd International Symposium on Sys terns and Control in Aeronautics and Astronautics. 2010.

共引文献92

同被引文献12

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部