期刊文献+

多通道相位图像的改进型自适应重建算法

Improved Adaptive Reconstruction of Multi-Channel Phase Images
下载PDF
导出
摘要 自适应重建(Adaptive Reconstruction,AR)算法被广泛应用于磁共振图像的多通道合并问题上.AR算法不需要直接采集各个线圈的灵敏度信息,而是通过通道间信号及噪声相关矩阵,估算出各个通道的灵敏度,从而保证了合并的幅值图像具有较高的信噪比(Signal-to-Noise Ratio,SNR).然而,由于AR算法没有针对相位图像的合并问题进行优化,导致重建出的相位图像具有不确定性.另外,受各通道之间相位偏移及低信噪比相位图像的影响,重建结果可能包含伪影.该文提出了一种改进型AR算法,估算并移除了各通道之间的相位偏移,同时对多通道数据的相位进行质量评估及通道重排,用以进行后续自适应重建.仿体及在体实验表明,该方法可以有效提升AR算法稳定性、消除重建图像中存在的伪影,同时保持合并后幅值图像及相位图像的高信噪比. Adaptive reconstruction (AR) has been widely used to combine multi-channel MRI images. AR can estimate coil sensitivity through signal and noise correlation matrices between different channels, and therefore achieve optimized signal-to-noise ratio (SNR) for the reconstructed images. However, AR is usually not optimized for phase images, which may lead to uncertainties when used to reconstruct phase images. In addition, the reconstructed phase images may contain artifacts when there are coil-dependent phase offsets and noise-corrupted phase images. In this study, an improved adaptive reconstruction (iAR) method was developed, which can eliminate coil-dependent phase offsets, and rearrange multi-channel data after a data quality judgment. Phantom and in vivo experiments demonstrated that the proposed method had improved robustness over the original AR method, and it can eliminate the artifacts contained in the reconstructed phase images while maintaining high SNR.
作者 吴鹏 郭华 WU Peng GUO Hua(Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China)
出处 《波谱学杂志》 CAS CSCD 北大核心 2016年第4期539-548,共10页 Chinese Journal of Magnetic Resonance
关键词 磁共振成像(MRI) 自适应重建(AR)算法 移除相位偏移 相位图像重建 尖端伪影 MRI, adaptive reconstruction (AR), phase offsets removal, phase reconstruction, cusp artifact
  • 相关文献

参考文献2

二级参考文献36

  • 1Reichenbach J R,Venkatesan R,Schillinger D J,et al.Small vessels in the human brain:MR venography with deoxyhemoglobin as an intrinsic contrast agent[J].Radiology,1997,204(1):272-277.
  • 2Haacke E M,Xu Y B,Cheng Y C N,et al.Susceptibility weighted imaging (SWI)[J].Magn Reson Med,2004,52(3):612-618.
  • 3Li L,Leigh J S.Quantifying arbitrary magnetic susceptibility distributions with MR[J].Magn Reson Med,2004,51(5):1 077-1 082.
  • 4Port J D,Pomper M G.Quantification and minimization of magnetic susceptibility artifacts on GRE images[J].J Comput Assist Tomogr,2000,24(6):958-964.
  • 5Salomir R,De Senneville B D,Moonen C T W.A fast calculation method for magnetic field inhomogeneity due to an arbitrary distribution of bulk susceptibility[J].Concepts Magn Reson Part B-Magn Reson Eng,2003,19B(1):26-34.
  • 6Liu C L.Susceptibility Tensor Imaging[J].Magn Reson Med,2010,63(6):1 471-1 477.
  • 7de Rochefort L,Brown R,Prince M R,et al.Quantitative MR susceptibility mapping using piece-wise constant regularized inversion of the magnetic field[J].Magn Reson Med,2008,60(4):1 003-1 009.
  • 8de Rochefort L,Nguyen T,Brown R,et al.In vivo quantification of contrast agent concentration using the induced magnetic field for time-resolved arterial input function measurement with MRI[J].Med Phys,2008,35(12):5 328-5 339.
  • 9Liu T A,Spincemaille P,de Rochefort L,et al.Unambiguous identification of superparamagnetic iron oxide particles through quantitative susceptibility mapping of the nonlinear response to magnetic fields[J].Magn Reson Imaging,2010,28(9):1 383 1 389.
  • 10Li W,Wu B,Liu C L.Quantitative susceptibility mapping of human brain reflects spatial variation in tissue composition[J].Neuroimage,2011,55(4):1 645-1 656.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部