期刊文献+

用于压缩感知磁共振成像的分割字典学习算法 被引量:4

Dictionary Learning with Segmentation for Compressed-Sensing Magnetic Resonance Imaging
下载PDF
导出
摘要 字典学习算法可以根据数据本身的特点构建稀疏域中的基,从而使数据的表示更加稀疏.该文在传统的字典学习算法基础上提出了分割字典学习算法,由于部分磁共振图像组织结构简单、可以进行图像分割,因此可根据此特点来优化字典中基函数的构建,使磁共振图像的表达更为稀疏,从而获得更高的重建图像质量.该文利用模拟数据和真实数据进行了重建实验,结果表明与传统的字典学习算法相比,分割字典学习算法能进一步改善重建图像质量. Dictionary learning (DL) builds a set of basis functions from the input data, such that the data can be represented more sparsely. Based on the fact that certain magnetic resonance (MR) images can be easily segmented, we propose an algorithm named dictionary learning with segmentation (DLS). The algorithm achieves better image reconstruction quality by optimizing construction of the dictionary and to making representation of the MR images sparser though incorporating image segmentation into dictionary learning. The experimental results on simulated datasets and in vivo images demonstrated that the proposed algorithm can yield better reconstruction relative to the traditional dictionary learning algorithm.
作者 宋阳 谢海滨 杨光 SONG Yang XIE Hai-bin YANG Guang(Shanghai Key laboratory of Magnetic Resonance, Department of Physics, East China Normal University, Shanghai 200062, China Shanghai Colorful Magnetic Resonance Technology Co. Ltd., Shanghai 201614, China)
出处 《波谱学杂志》 CAS CSCD 北大核心 2016年第4期559-569,共11页 Chinese Journal of Magnetic Resonance
基金 国家高技术研究发展计划资助项目(2014AA123400)
关键词 磁共振成像(MRI) 压缩感知 字典学习 图像分割 magnetic resonance imaging (MRI), compressed sensing, dictionary learning, segmentation
  • 相关文献

参考文献2

二级参考文献61

  • 1Jaravine V I I, Orekhov V Y. Removal of a time barrier for high-resolution multidimensional NMR spectroscopy[J]. Nature Methods, 2006, 3(8): 605-607.
  • 2Bruschweiler R. Theory of covariance nuclear magnetic resonance spectroscopy[J]. I Chem Pb_ys, 2004, 121 ( 1 ): 409 - 414.
  • 3Hu B W, Zhou P, Noda I, et al. An NMR approach applicable to biomolecular structme characterization[J]. Anal Chem, 2005, 77(23): 7 534-7 538.
  • 4Barua J C J, Lane E D, Mayger M R, et al. Exponential sampling, an alternative method for sampling in two-dimemsional NMR experiments[J]. J Magn Reson, 1987, 73(1): 69-77.
  • 5Jeffrey C, Hoch A S S. Maximum entropy reconstruction, spectrum analysis and deconvolution in multidimensional nuclear magnetic resonance[J]. Method Enzymol, 2002, 338: 159- 178.
  • 6Kazimierczuk K, Orekhov V Y. Accelerated NMR spectroscopy by using compressed sensing[J]. Angew Chem Int Ed, 2011, 50(24): 5 556-5 559.
  • 7Coggins B E, Zhou P. High resolution 4-D spectroscopy with sparse concentric shell sampling and FFT-CLEAN[J]. J Biomol NMR, 2008, 42(4): 225 -239.
  • 8Kazimierczuk K, Kozminski W, Zhukov I. Two-dimensional Fourier transform of arbitrarily sampled NMR data sets[J]. J Magn Reson, 2006, 179(2): 323 -328.
  • 9Kazimierezuk K, Zawadzka A, Kozminski W, et al. Random sampling of evolution time space and fourier transform processing[J]. J Biomol NMR, 2006, 36(3): 157 - 168.
  • 10Emmanuel J C, Justin R, Member L, et al. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE T Inf Theory, 2006, 52(2): 489-509.

共引文献2

同被引文献9

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部