期刊文献+

二氧化硅/聚乙烯基倍半硅氧烷超疏水涂层的制备与表征 被引量:8

Preparation and Characterization of Superhydrophobic Coatings with Silica/Polyvinylsilsesquioxane
下载PDF
导出
摘要 采用溶胶-凝胶法,以乙烯基三甲氧基硅烷(VTMOS)对亲水性醇溶胶进行疏水改性,并采用扫描电镜、红外光谱、X射线衍射对涂层表面形貌、结构进行分析。结果表明,VTMOS在对Si O2进行疏水改性的同时,也在氨水的催化作用下通过自身的水解缩聚反应生成了具有规整圆球状聚乙烯基倍半硅氧烷微粒(PVSQ),使较小的纳米级改性Si O2粒子分散于生成的较大的PVSQ微球状粒子表面,不仅改善了Si O2的团聚现象,而且形成了截留更多空气的Si O2-PVSQ复合界面,减少了液滴与固体表面的接触,与含单一疏水Si O2粒子的醇溶胶制备的涂层相比,使得涂层的水接触角(WCA)从143°提高到167°,并使滚动角(SA)从25°下降为3°,实现了真正意义上的超疏水。 In ethanol solution, silica particles was modified with vinyltrimethoxy-silane (VTMOS), and the functional alcosol was used to prepare hydroptaobic coating by coating methods. The surface morphologies, structures and composes of as-prepared SiO2, PVSQ, composite SiO2-PVSQ were investigated by SEM, FT-IR, and XRD respectively. The results show that VTMOS not only modifies the silica changing from hydrophilia into hydrophobicity, but also produces a series of highly monodisperse spherical polyvinylsilsesquioxane (PVSQ) by hydrolysis and condensation reaction with the catalyst of ammonia. The smaller silica particles are adhered to the surface of bigger PVSQ spherical particles, which reduce reuniting of the silica particles and form a rough hierarchical micro-structure resulted in more air to be captured. Compared with the surface of pure SiO2, the obtained composte surface capturing more air makes the water the contact angle (WCA) increase from 143° to 167° and the sliding angle (SA) decrease from 25° to 3°, achieving a real superhydrophobic surface.
作者 杨辉 高红芳
出处 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2016年第11期130-134,共5页 Polymer Materials Science & Engineering
基金 国家"973"预研项目(2014CB260411) 陕西科技大学学术带头人团队项目(2013XSD19)
关键词 乙烯基三甲氧基硅烷 聚乙烯基倍半硅氧烷 二氧化硅 超疏水涂层 vinyltrimethoxysilane polyvinylsilsesquioxane SiO2 superhydrophobic coatings
  • 相关文献

参考文献2

二级参考文献42

  • 1Barthlott W, Neinhuis C. Planta, 1997, 202 (1): 1-8.
  • 2Neinhuis C, Barthlott W. Annals of Botany, 1997, 79 (6): 667-677.
  • 3Nishino T, Meguro M, Nakamae K. Langmuir, 1999, 15 (13): 4321-4323.
  • 4Youngblood J P, McCarthy T. J. Macromolecules, 1999, 32 (20): 6800-6806.
  • 5Nakajima A, Fujishima A, Hashimoto K. Adv. Mater.,1999,11(16):1365-1368.
  • 6Yavuz M, Demirel A, Frank M. Langmuir, 2005, 21 (11): 5073-5078.
  • 7Mchale G, Shirtcliffe N J, Newton M I. Langmuir, 2004, 20 (23): 10146-10149.
  • 8Kijlstra J, Reihs K, Klamt A. Colloids and Surface A,2002, 206 (1-3): 521-529.
  • 9Wu X D, Zheng L J, Wu D. Langmuir, 2005, 21 (7): 2665-2667.
  • 10Hazlett R D. J. Colloid and Interface Sci., 1990, 137 (2): 527-533.

共引文献27

同被引文献581

引证文献8

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部