期刊文献+

具有半对称度量联络的广义Sasakian空间形式中子流形上的Chen不等式

Chen Inequalities for Submanifolds of Generalized Sasakian Space Forms with a Semi-symmetric Metric Connection
下载PDF
导出
摘要 利用代数技巧,建立具有半对称度量联络的广义Sasakian空间形式中子流形上的Chen不等式,给出了子流形关于半对称度量联络的平均曲率与子流形关于半对称度量联络的截面曲率和数量曲率等内在不变量之间的关系. Using algebraic techniques, we established Chen inequalities for submanifolds of .generalized Sasakian space forms with a semi-symmetric metric connection, and gave relationships between the mean curvature associated with a semi-symmetric metric connection and certain intrinsic invariants involving the sectional and scalar curvatures of submanifolds.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2016年第6期1248-1254,共7页 Journal of Jilin University:Science Edition
基金 安徽省自然科学基金(批准号:1408085MA01) 江苏省自然科学基金(批准号:G2014022)
关键词 Chen不等式 广义Sasakian空间形式 半对称度量联络 Chen inequalities generalized Sasakian space form semi-symmetric metric connection
  • 相关文献

参考文献3

二级参考文献32

  • 1李光汉,吴传喜.SLANT IMMERSIONS OF COMPLEX SPACE FORMS AND CHEN'S INEQUALITY[J].Acta Mathematica Scientia,2005,25(2):223-232. 被引量:10
  • 2NASH J F. The imbedding problem for Riemannian manifolds[J]. Ann of Math, 1956,63:20- 63.
  • 3CHEN B Y, DILLEN F, VERSTRAELEN L, VRANCKEN L. Tota real submanifolds of CP satisfying a basic equality[J]. Arch Math, 1994,63 : 553 - 564.
  • 4CHEN B Y. :-invariants, inequalities of submanifolds and their applications[C], in: MIHA1 A, MIHA1 I, MIRON R. Topics in Di. erential geometry. Bucharest: Editura Academeiei Rom ane, 2008.
  • 5CHEN B Y. Pseudo-riemannian geometry,:-invariants and applications[ M]. New Jer-sey: World Scientic, 2011.
  • 6MIHAI A, CHEN B Y. Chen inequalities for slant suhmanifolds in generalized complex space forms[J]. Radovi Mathematicki,2004,12:215 - 231.
  • 7ARSLAN K, EZENTASAND R, MIHAIAND I, OZGiL,R C. Certain inequalities for submanifolds in (k,tz)-contact space forms[J]. Bulletin of the Australian Mathematical Society,2001,64(2) :201 - 212.
  • 80ZGU'R C, CHEN B Y. Chen inequalities for suhmanifolds a Riemannian manifold of a quasi-constan curvature[ J ]. Turk J Math, 2011,35:, 501-509.
  • 9LI X, HUANG G, XU J. Some inequalities for submanifolds in locally conformal almost cosymplectic manifolds [ J ]. Sooehow Journal of Mathematics, 2005,31(3) :309.
  • 10MIHAI A, OZGUR C. Chen inequalities for submanifolds of real space forms with a semi-symmetric metric connection[J]. Taiwan Residents Journal of Mathematics, 2010,4 (14) : 1465 - 1477.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部