期刊文献+

群体计算中基于博弈论的任务分配策略

Task Allocation Strategy Based on Game Theoryin Group Computing
下载PDF
导出
摘要 大数据的快速发展,推动了社会经济和科技的发展,但大数据的价值密度低等特点为其发展带来了挑战。大数据的这些特点使得大数据迫切需要复杂认知的推理技术,而人机协作的群体计算成为了复杂认知推理技术的有效途径,但其任务分配策略还尚未完善。尽管已经有学者提出了基于用户主题感知的任务分配策略,解决了涉及不同专业背景及不同知识水平的任务分配,但并未解决处于同层次知识水平和专业背景的用户如何分配任务,使得计算效率更高。针对此问题,提出了基于博弈论的任务分配算法,检测相同专业背景和知识水平的人群完成任务的准确率,与任务随机分配相比较,突出博弈论算法的准确性。 The rapid development of big data promotes the progress of economy and technology,but the features,low value density,bring challenges to the big data.These features make that it need urgently complex cognitive reasoning,which is effectively solved by human-machine collaboration based crowd computing.However,crowd computing's task allocation strategy is not maturity completely.some scholars have come up with a theme-aware task assignment framework,which solves task allocation to different professional background and knowledge level,but it does not deal with task allocation involving same knowledge level and professional background,which makes higher computational efficiency.To deal with this problem,it propose a task allocation algorithm based on game theory,which detects the accuracy with same professional and knowledge level.The task allocation algorithm based on game theory,compared with randomly task allocation,shows the accuracy of game theory algorithm.
出处 《计算机与数字工程》 2016年第11期2144-2147,2173,共5页 Computer & Digital Engineering
基金 国家自然科学基金项目(编号:61350011 61379058) 湖南省自然科学基金项目(编号:14JJ2115 12JJ2036) 湖南工业大学研究生校级创新基金项目(编号:CX1605) 互联网+环境下协同云制造业务流程监管方法研究(编号:16A059) 基于多源大数据融合的装备健康评估与预测(编号:16B071)资助
关键词 群体计算 博弈论 大数据 任务分配 crowd computing game theory big data task allocation
  • 相关文献

参考文献2

二级参考文献37

  • 1Chris Anderson. The End of Theory: The Data Deluge Makes the Scientific Method Obsolete. Wired, 2008, 16 (7).
  • 2Albert-L~iszl6 Barab~isi. The network takeover. Nature Physics, 2012,8(1): 14-16.
  • 3Reuven Cohen, Shlomo Havlin. Scale-Free Networks Are U1- trasmall. Physical Review Letters, 2003, 90,(5 ).
  • 4Tony Hey, Stewart Tansley, Kristin Tolle (Editors). The Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft, 2009 October 16.
  • 5Big Data. Nature, 2008, 455(7 209): 1-136.
  • 6Dealing with data. Science, 2011,331 ( 6 018 ): 639-806.
  • 7Complexity. Nature Physics, 2012, 8( 1 ).
  • 8Big Data. ERCIM News, 2012, (89).
  • 9David Lazer, Alex Pentland, Lada Adamic et al. Computational Social Science. Science, 2009, 323 ( 5 915 ): 721-723.
  • 10The 2011 Digital Universe Study: Extracting Value from Chaos. International Data Corporation and EMC, June 2011.

共引文献1615

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部