期刊文献+

基于RGB动态纹理的人群活动变化检测 被引量:2

RGB dynamic textures based detection about the change of crowd activities
下载PDF
导出
摘要 为了快速准确地检测人群活动的变化,给出一种基于RGB动态纹理的人群视频图像序列检测算法。该方法首先提取视频序列图像RGB三个通道的动态纹理特征并级联起来,然后用滑窗法量化视频序列之间的差异,从而构造人群活动变化曲线。实验结果表明,所给方法能够有效地检测出人群活动的变化,并快速浏览人群行为的变化趋势。 A new method is proposed to detect the change of crowd sequence of video images based on RGB dynamic textures.Firstly,dynamic textures are respectively extracted from the RGB three channels of video sequence images and cascade them together.Then,quantify the difference between sequences by sliding window,thus,the change curve of crowd activities can be obtained.Experimental results show that,the change curve can fast browse and effectively detect the changes.
出处 《西安邮电大学学报》 2016年第6期29-34,共6页 Journal of Xi’an University of Posts and Telecommunications
基金 国家自然科学基金资助项目(41504115) 公安部科技强警基础专项资助项目(2015GABJC51 2015GABJC50) 陕西省自然科学基础研究计划资助项目(2015JQ6223) 陕西省教育厅科研基金资助项目(16JK1691)
关键词 RGB 动态纹理 人群活动 变化检测 RGB dynamic texture crowd activities change detection
  • 相关文献

参考文献3

二级参考文献142

  • 1木拉提.哈米提,刘伟,童勤业.纹理谱直方图与潜在语义标引在图像检索中的应用[J].科技通报,2006,22(3):389-394. 被引量:10
  • 2苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. 被引量:387
  • 3钟志,徐扬生,石为人,叶伟中,李家强.群体异常检测(英文)[J].仪器仪表学报,2007,28(4):614-620. 被引量:4
  • 4POPOOLA O P, WANG K. Video-based abnormal hu- man behavior recognition-a review [ J ], IEEE Transac- tions on System, Man, and Cybernetics Part C, 2012,42 (6) : 865-878.
  • 5COLLINS R T, LIPTON A J, KANADE T. A system for video surveillance and monitoring [ C]. Proceedings of the 1999 American Nuclear Society (ANS) Eighth In- ternational Topical Meeting on Robotic and Remote Sys- tems, Pittsburgh, PA, USA ,25-29April, 1999.12-19.
  • 6HARITAOGLU I, HARWOOD D, DAVIS L S. W4 : A real time system for detecting and tracking people [ C ]. Proceedings of the 1998 IEEE International Conference on Computer Vision and Pattern Recognition, Santa Bar- bara, CA, USA, 23-25June, 1998,962-969.
  • 7HUANG K,TAN T. Vs-star: a visual interpretation sys- tem for visual surveillance[ J]. Pattern Recognition Let- ters,2010,31 ( 15 ) : 2265-2285.
  • 8University of California, San Diego. UCSD Anomaly De-tection Dataset [ EB/OL ]. http ://www. svcl. ucsd. edu/ project-s/anomaly/dataset, html. 2010-10-10.
  • 9University of Minnesota. UMN abnormal events detection dataset [ EB/OL ]. http ://mha. cs. umn. edu/proj _ e- vents, shtml. 2009-4-12.
  • 10ADAM A, RIVLIN E, SHIMSHONI I, REINITZ D. Ro- bust real-time unusual event detection using multiple fixed-location monitors [ J ]. IEEE Transactions on Pat- tern Analysis and Machine Intelligence, 2008,30 ( 3 ) : 555-560.

共引文献44

同被引文献5

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部