期刊文献+

分子支架对聚丙烯酰胺双网络水凝胶的性能调控

Properties of Double Network Polyacrylamide Hydrogel by Introducing Molecular Stent
下载PDF
导出
摘要 通过向中性水凝胶聚丙烯酰胺(PAAm)中引入聚电解质聚2-丙烯酰胺-2-甲基丙磺酸(PAMPS)的方法,制备了双交联网络(双网络)聚丙烯酰胺/聚2-丙烯酰胺-2-甲基丙磺酸分子支架/聚丙烯酰胺(PAAm/St-PAMPS/PAAm)水凝胶。测试了其溶胀性能,并采用拉伸-回缩滞后实验对水凝胶的力学性能与破坏原理进行了研究。结果表明:带聚电解质的PAAm/St-PAMPS/PAAm和PAAm/PAAm/St-PAMPS双网络水凝胶的体积比溶胀度都显著高于PAAm/PAAm双网络水凝胶。由拉伸-回缩滞后实验发现,PAAm/PAAm与PAAm/PAAm/St-PAMPS双网络水凝胶两层网络均匀受力直至完全破坏;而PAAm/St-PAMPS/PAAm双网络水凝胶在拉伸过程中第一层网络先破坏并耗散了能量,达到大应变后第二层网络才逐渐破坏,因此该水凝胶具有更大的断裂伸长率与拉伸强度。 Poly(acrylamide)/poly(2-acrylamide-2-methylpropane-sulfonie acid) as molecular stent/poly(acrylamide)(PAAm/St-PAMPS/PAAm) was synthesized using the method of polyelectrolyte as molecular stent in neutral hydrogel in the study. The swelling properties, mechanical properties and fracture mechanism via a cyclic tensile measurements methods were investigated. Results show that the swelling degrees of PAAm/St-PAMPS/PAAm and PAAm/PAAm/St-PAMPS hydrogel are higher than that of the PAAm/PAAm hydrogel. During the cyclic tensile test, the deformation of the double network in PAAm/PAAm/St-PAMPS and PAAm/PAAm hydrogel is homogeneously until sample is totally destroyed. But the first network of PAAm/St-PAMPS/PAAm hydrogel was broken first, which energy is dissipated, then, with an increase of strain, the second network is gradually broken. Meanwhile, PAAm/St-PAMPS/PAAm hydrogel has high failure strain and failure stress.
作者 李子谋 龙世军 Li Zimou Long Shijun(Wugang No. 3 High School of Wuhan City, Wuhan 430080 Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China)
出处 《广东化工》 CAS 2016年第21期72-73,65,共3页 Guangdong Chemical Industry
关键词 聚丙烯酰胺 聚电解质 分子支架 水凝胶 polyacrylamide: polyelectrolyte: molecular stent: hydrogels
  • 相关文献

参考文献4

二级参考文献111

  • 1陈义康,李立华,田冶,焦延鹏,罗丙红,周长忍.PVP/PVA半互穿网络材料的制备及其性能研究[J].功能高分子学报,2005,18(1):80-83. 被引量:6
  • 2Bonzani I C, George J H, Stevens M M. Curr. Opin. Chem. Biol., 2006, 10:568-575.
  • 3Elisseeff J. Exp. Opin. Biol. Ther., 2004, 4:1849-1859.
  • 4Marlovits S, Zeller P, Singer P, Besinger C, Vecsei V. Euro. J Radiol., 2006, 57:24-31.
  • 5Cindy C, Jason A B. Adv. Drug Del. Rev., 2008, 60:243-262.
  • 6Molly M S, Julian H G. Science, 2005, 310:1135-1138.
  • 7Peppas N A, Benner R E. Biomaterials, 1980, 1:158-162.
  • 8Kuijpers A J, van Wachum P B, van Luyn M J A, Engbers G H M, Krijsveld J, Zaat S A J, Dankert J, Feijen J. J. Control. Release, 2000, 67 : 323-336.
  • 9Hiemstra C, van der Aa L J, Zhong Z Y, Dijkstra P J, Feijen J. Biomacromolecules, 2007, 8 : 1548-1556.
  • 10Berger J, Reist M, Mayer J M, Felt O, Peppas N A, Gurny R. Euro. J. Pharm. Biopharm., 2004, 57:19-34.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部