期刊文献+

无监督上下文光谱角映射图像变化检测

Unsupervised context-sensitive spectral angle mapper based image change detection
下载PDF
导出
摘要 传统的遥感图像变化检测方法未能充分利用像素上下文信息,导致精度较低。针对这一问题,提出一种不需要像素概率分布假设、无监督的上下文光谱角映射图像变化检测方法。在像素变化的判别测试中,利用空间上下文信息特征提高了变化检测精确度,此方法可用于卫星遥感图像中,利用上下文光谱角映射创建相似图像,基于K-均值聚类算法将其分为有变化和无变化两类,以此生成映射图像。通过定性和定量分析,将实验结果与最大似然估计法(MLC)结果相比较。研究表明,无监督上下文光谱角映射图像变化检测方法精确度更高,可用于二时刻图像和多光谱图像变化检测问题。 Traditional remote sensing image change detection methods didn' t fully utilize context-sensitive information, so that the accuracy was low. To deal with this problem, this paper proposed an unsupervised context-sensitive spectral angle mapper based image change detection method,which didn't need probability distribution assumption of pixels. On the criterion of pixels change test,it used spatial context information, so as to improve the change detection accuracy. This method could be used in the satellite remote sensing images. It created an image of the similar spectral angle mapping by using context. Based on Kmeans clustering algorithm,it divided the mapping into two kinds of changed and unchanged. Through the qualitative and quantitative analysis,it compared the test results and the MLC results. Research shows that the accuracy of unsupervised image change detection method based on context spectral angle mapping is higher. It can be used in hi-temporal image and muhispectral image change detection.
作者 高雷阜 李超 Gao Leifu Li Chao(College of Science, Liaoning Technical University, Fuxin Liaoning 123000, China)
出处 《计算机应用研究》 CSCD 北大核心 2016年第12期3889-3891,3896,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(11401284) 高校博士学科点专项科研联合基金资助项目(20132121110009)
关键词 遥感图像 无监督 上下文 变化检测 K-均值聚类 remote sensing image unsupervised context-sensitive change detection K-means clustering
  • 相关文献

参考文献4

二级参考文献45

  • 1李德仁.利用遥感影像进行变化检测[J].武汉大学学报(信息科学版),2003,28(S1):7-12. 被引量:230
  • 2HAZEL G G. Object-level Change Detection in Spectral Imagery [ J ]. IEEE Transactions on Geoscience and Re- mote Sensing,2001, 39 ( 3 ) :553-561.
  • 3LU D, Change Detection Techniques [ J ]. International Journal of Remote Sensing,2004, 25 (12) :2365-2401.
  • 4DAI X L, KHORRAM S. The Effects of Image Misregistra- tion on the Accuracy of Remotely Sensed Change Detec- tion [ J ]. IEEE Transactionson on Geoscience and Remote Sensing, 1998,36(5 ) : 1566-1577.
  • 5那彦,焦李成.基于多分辨率分析的图像融合方法[M].西安:西安电子科技大学出版社,2007.
  • 6GONZALEZ-AUDICANA M, SALETA J L, CATALAN R G,et al Fusion of muhispectral and panchromatic images using improved IHS and PCA mergers based on wavelet decomposition[ J]. IEEE Trans on Geoscience and Remote Sensing,2004,42(6) : 1291-1299.
  • 7WANG Zhi-jun, ZIOU D, ARMENAKIS C ,et al. A comparative anal.- ysis of image fusion methods[ J]. IEEE Trans on Geoscience and Remote Sensing,2005,43(6) : 1391-1402.
  • 8MYUNGJIN C, RAE Y K, MYEOUNG R N. Fusion of multispectral and panchromatic satellite images using the curvelet transform [ J ] IEEE Geoscience and Remote Sensing Letters, 2005,2 (2) 136-140,.
  • 9DONOHO D L. Compressed sensing[ J]. IEEE Trans on Informa- tion Theory, 2006,52(4) : 1289-1306.
  • 10CANDES E, ROMBERG J, TAO T. Stable signal recovery from in- complete and inaccurate measurements [ J ]. Communications on Pure and Applied Mathematics, 2006,59(8) : 1207-1223.

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部