期刊文献+

利妥昔单抗不良反应信号挖掘与分析 被引量:8

Signal Mining and Analysis of Adverse Drug Reactions Caused by Rituximab
原文传递
导出
摘要 目的 通过对利妥昔单抗相关不良反应进行信号挖掘研究,为临床合理安全用药提供参考。方法 采用报告比值比法(reporting odds ratio,ROR)和贝叶斯置信度递进神经网络法(Bayesian confidence propagation neural network,BCPNN),对美国不良事件报告系统(FDA Adverse Event Reporting System,FAERS)2014年第一季度~2015年第四季度收集的报告进行分析,挖掘利妥昔单抗产生的相关不良反应信号。结果 ROR法和BCPNN法分别挖掘利妥昔单抗可疑ADR不良反应相关信号657个和43个,其中包括药品说明书中未出现的新的可疑ADR信号分别为68个(ROR法,筛选条件:95%CI-排名前300位且ROR值大于2.5)和10个(BCPNN法)。结论 利妥昔单抗可疑ADR信号的挖掘,可以为国内临床合理安全用药提供参考依据。 OBJECTIVE To provide the reference for clinical rational safe drug use by the signal mining of adverse drug reactions caused by rituximab. METHODS Reporting odds ratio and Bayesian confidence propagation neural network methods were used to make a signal mining of suspected ADRs caused by rituximab from FDA Adverse Event Reporting System, where the reports collected from the first quarter in 2014 to the fourth quarter in 2015 can be used in this study. RESULTS 657 and 43 warning signals were ob- tained by ROR method and BCPNN method,including 68 new suspected ADR signals by ROR( limited with 95% CI value ranked top 300 ADR signals and ROR value greater than 2. 5 ) and 10 new ADR signals by BCPNN, which are not mentioned in instructions. CONCLUSION Mining the signals of the adverse drug reactions of rituximab can provide reference for domestic clinical rational safe drug use.
出处 《中国药学杂志》 CAS CSCD 北大核心 2016年第22期1976-1981,共6页 Chinese Pharmaceutical Journal
关键词 利妥昔单抗 新的不良反应 信号挖掘 合理用药 rituximab new adverse drug reaction signal mining rational drug use
  • 相关文献

参考文献2

二级参考文献38

  • 1Bate A,Edwards I R.Data mining in spontaneous reports[J].Basic Clin Pharmacol Toxicol,2006,98(3):324-330.
  • 2Norén G N,Orre R,Bate A.A hit-miss model for duplicate detection in the WHO drug safety database[EB/OL].(2005-01-01)[2008-09-10].http://www2.math.su.se/-noren/papers/noren2005_av.pdf.
  • 3Sthl M,Lindquist M,Edwards I R,et al.Introducing triage logic as a new strategy for the detection of signals in the WHO Drug Monitoring Database[J].Pharmacoepidemiol Drug Saf,2004,13(6):355-363.
  • 4Norén N.Knowledge discovery in safety databases[EB/OL].(2008-04-24)[2008-09-10].http://www.statistikersamfundet.se/fms/vm2008/NiclasNoren.pdf.
  • 5Brinker A D,Beitz J.Spontaneous reports of thrombocytopenia in association with quinine:clinical attributes and timing related to regulatory action[J].Am J Hematol,2002,70(4):313-317.
  • 6Norén G N,Bate A,Johansson K,et al.Duplicate detection in the WHO adverse drug reaction database[EB/OL].(2007-02-07)[2008-09-10].http://www.who-umc.org/graphics/9717.pdf.
  • 7Norén G N,Orre R,Bate A,et al.Duplicate detection in adverse drug reaction surveillance[J].Data Min Knowl Disc,2007,14(3):305-328.
  • 8Rothman K J,Lanes S,Sacks S T.The reporting odds ratio and its advantages over the proportional reporting ratio[J].Pharmacoepidemiol Drug Saf,2004,13(8):519-523.
  • 9Kubota K,Koide D,Hirai T.Comparison of data mining methodologies using Japanese spontaneous reports[J].Pharmacoepidemiol Drug Saf,2004,13(6):387-394.
  • 10Harvey J T,Turville C,Barty S M.Data mining of the Australian adverse drug reactions database:a comparison of Bayesian and other statistical indicators[J].Intl Trans in Op Res,2004,11(4):419-433.

共引文献52

同被引文献45

引证文献8

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部