期刊文献+

基于PSO优化BP神经网络的逆运动学求解研究 被引量:3

Research on Inverse Kinematics Solution of BP Neural Network Based on PSO Optimization
下载PDF
导出
摘要 针对传统BP神经网络算法应用于机器人逆运动学求解时存在的因易陷入局部极值导致输出误差偏大的问题,该文提出了一种基于PSO优化的BP神经网络在求解机器人逆运动学中的应用。首先通过PSO算法迭代计算粒子适应度;其次,依据个体极值和群体极值的不断更新得到最优的BP网络初始权值阈值。该方法避免了局部极值问题并且加快了BP网络训练过程的收敛速度。实验结果表明,采用论文提出的方法对机器人逆运动学的求解得到误差小于0.1°的关节角输出。 Aiming at the traditional BP neural network algorithm is applied to the robot inverse kinematics solution is due to fall into the local extremum of the output error caused,this paper proposed a BP neural network based on PSO optimizing in solving robot inverse kinematics should be used. Firstly through the PSO algorithm iteration calcu- lation of particle fitness. Secondly,according to the individual and group extreme constantly updated get the optimal initial weights of BP neural network threshold. The method avoid local extremum problem and accelerate the conver- gence speed of the BP network training process. The experimental results show that the proposed method is used to solve the inverse kinematics of the robot,and the output error is less than 0.1 degrees.
作者 赵建强 刘满禄 王姮 ZHAO Jian-qiangl LIU Man-lu WANG Heng(Special Environment Robot Technology Key Laboratory of Sichuan Province,Southwest University of Science and Technology,Mianyang 621000,China School of Information Science and Technology,University of Science and Tech- nology of China,Hefei 230026,China)
出处 《自动化与仪表》 2016年第11期1-6,共6页 Automation & Instrumentation
基金 四川省科技支撑计划项目(2015GZ0027)
关键词 BP神经网络 PSO算法 逆运动学求解 机器人 BP neural network PSO algorithm inverse kinematics solution robot
  • 相关文献

参考文献5

二级参考文献31

  • 1方正,佟国峰,徐心和.粒子群优化粒子滤波方法[J].控制与决策,2007,22(3):273-277. 被引量:95
  • 2[1]Paul P R,Shimano B.Kinematic Control Equations for Simple Manipulators.IEEE Trans. on SMC,1981, 11(6):66~72
  • 3[2]Manocha D,Canny J F.Efficient Inverse Kinematics for General 6r Manipulator.IEEE Trans.on Robotics and Automation,1994,10(5):648~657
  • 4[3]Lee G C S.Robot Arm Kinematics,Dynamics and Control.Computer,1982,15(12):62~79
  • 5[4]Featherstone R.Position and Velocity Transformation between Robot End-effector Coordinate and Joint angle.The International Journal of Robotics Research,1983,2(2):35~45
  • 6[5]Korein J U,Balder N I.Techniques for Generating the Goal-Directed Motion of Articulated Structures.IEEE Computer Graphics and Application,1982,2(9):71~81
  • 7叶龙,王京玲,张勤.遗传重采样粒子滤波器[J].自动化学报,2007,33(8):885-887. 被引量:43
  • 8徐茂格,宋耀良,刘力维.基于修正扩展卡尔曼滤波和粒子滤波的混沌信号检测与跟踪[J].南京理工大学学报,2007,31(4):514-517. 被引量:5
  • 9Haykin S. Neural networks: A comprehensive foundation[M]. New York: Prentice-Hall Inc., 1999.
  • 10Gordon N, Salmond D J, Smith A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation [ J]. Radar and Signal Processing, IEE Proceedings F, 1993,140(2): 107-113.

共引文献39

同被引文献20

引证文献3

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部