期刊文献+

连铸板坯结晶器内凝固坯壳裂纹敏感性研究 被引量:3

Analysis of Solidified Shell Cracking Susceptibility in Slab Continuous Casting Mold
原文传递
导出
摘要 基于钢凝固两相区溶质微观偏析模型和连铸结晶器内坯壳凝固生长二维瞬态热/力耦合有限元模型,提出了定量化描述结晶器内坯壳凝固生长的裂纹敏感性预测模型---CSC(Cracking Susceptibility Coefficient)模型。通过分析结晶器内包晶钢坯壳凝固宏观热/力学行为和坯壳裂纹敏感系数分布,探究了板坯结晶器内包晶钢坯壳凝固生长过程中裂纹敏感性的变化规律。结果表明,典型包晶钢板坯连铸工况下,坯壳偏离角区域易产生"热点",引发坯壳凝固前沿脆性温度区宽度扩大,结晶器窄面线性单锥度极易破坏坯壳应力分布的均匀性;包晶钢板坯表面裂纹和皮下裂纹主要产生于坯壳凝固初期,坯壳角部皮下裂纹则在结晶器内大部分区域均可能产生。 Based on a microsegregation model of solute elements in mushy zone and a two dimensional transient thermo-mechanical coupling finite element model to describe the growth of solidifying shell in continuous casting mold, a CSC (Cracking Susceptibility Coefficient) analytical model to represent the possibility of solidification cracking of shell in mold quantitatively was proposed. The variation of shell cracking susceptibility in slab mold during a typical peritectic steel continuous casting process was investigated by analyzing the thermal and mechanical behaviors of solidified shell and the shell CSC distribution. The results show that the hot spots appear on shell off-comer and broaden the area of shell brittle temperature range under the typical peritectic steel slab continuous casting process, and the uniformity of shell stress distribution would be broken by adopting simple linear mold narrow face taper. Moreover, the shell surface cracks and subsurface cracks of peritectic steel slab mainly occur in the initial stage of shell solidification, while the comer subsurface cracks can occur at most part of the mold height.
出处 《铸造技术》 CAS 北大核心 2016年第11期2376-2383,共8页 Foundry Technology
基金 国家自然科学基金资助项目(51404061)
关键词 板坯连铸 结晶器 裂纹敏感性 热/力学行为 slab continuous casting mold crack susceptibility thermo-mechanical behavior
  • 相关文献

参考文献3

二级参考文献26

  • 1H.L. Zhang, E.G. Wang, G.L. Jia and J.C. He (Key Laboratory of National Education Ministry for Electromagnetic Processing of Materials, Northeastern University, Shenyang 110004, China).EFFECTS OF LINEAR ELECTROMAGNETIC STIRRING ON THE SOLIDIFICATION STRUCTURE OF BILLET[J].Acta Metallurgica Sinica(English Letters),2001,14(3):227-234. 被引量:5
  • 2Konishi J, Militzer M, Brimacombe J K, Samarasekera I V. Metall Mater Trans, 2002; 33B: 413.
  • 3Thomas B G, Brimacombe J K, Samarasekera I V. Trans Iron Steel Soc AIME, 1986; 7:21.
  • 4Kim K, Han H N, Yeo T, Lee Y, Oh K H and Lee D N. Ironmaking Steelmaking, 1997; 24:249.
  • 5Kobayashi S, Nagamichi T, Gunji K. Trans Iron Steel Inst Jpn, 1988; 28:543.
  • 6Ueshima Y, Mizoguchi S, Matsumiya T, Kajioka H. Metall Mater Trans, 1986; 17B: 845.
  • 7Kim K, Yeo T, Oh K H, Lee D N. ISIJ Int, 1996; 36:284.
  • 8Suzuki M, Yamaoka Y. Mater Trans, 2003; 44:836.
  • 9Muojekwu C A, Samarasekera I V, Brimacombe J K. Metall Mater Trans, 1995; 2613:361.
  • 10Zhu Z Y, Wang X H, Wang W J, Zhang J M. In: The Chinese Society for Metals ed., Proceedings of Asia Steel International Conference, Beijing: Metallurgical Industry Press. 2000:358.

共引文献74

同被引文献16

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部