期刊文献+

阳极功能层对SOFC单电池电性能的影响

Influence of Anode Functional Layer on Electrochemical Performance of Single Cell for SOFC
原文传递
导出
摘要 采用水系流延(含双层水系流延)技术流延电解质/阳极(阳极功能层),叠压共烧技术制备大规格阳极支撑型半电池,利用丝网印刷技术印刷LSM-YSZ阴极,经烧成后获得单电池,对比研究了阳极功能层对SOFC单电池电性能的影响。采用SEM、电子负载及电化学工作站对单电池结构和电性能进行了表征。研究结果表明,阴极、电解质、阳极功能层和阳极支撑层之间结合紧密,阳极功能层的结构均匀,平均孔径为1.12μm。在单电池中增加阳极功能层,单电池以H_2+3%水蒸气为燃料气,空气为氧化气在750℃的最大功率密度由0.21W/cm^2变为0.31W/cm^2,极化阻抗由0.98Ω·cm^2降至0.69Ω·cm^2,单电池放电100h后衰减率由6.94%降至2.63%,衰减率降低了62.1%。 A large-size anode supported half cell with YSZ electrolyte/anode(anode functional layer) was prepared by aqueous tape casting (including in bilayer aqueous tape casting) and overlying co-fired method. Then, LSM+YSZ cathode on the half cell was prepared by silk screen printing technique. Finally, the single cell was obtained by sintering. The influence of anode functional layer on electrochemical performance of single cell for SOFC was investigated. The structure and electrochemical performance of single cell was characterized by scanning electron microscope(SEM), electronic load and electrochemical workstation, respectively. The result showed that, cathode, electrolyte, anode functional layer, anode supported layer of single cell were connected well, the structure of anode functional layer was homogeneous, the average pore size was 1.12 p m. The maximum power density, polarization resistance, decay rate after discharge for 100 h of single cell with anode functional layer using H2+3%H20 as fuel and air as oxide gas at 750 ℃ varied from 0.21W/cm2 to 0.31W/cm2, 0.98Ω.cm2 to 0.69 Ω.cm2, 6.94% to 2.63%, respectively. The decay rate reduced 62.1%.
出处 《中国陶瓷》 CAS CSCD 北大核心 2016年第11期12-15,20,共5页 China Ceramics
基金 国家自然科学基金(51262010 51462011) 江西省高等学校科技落地计划项目(KJLD13072) 江西省教育厅科技项目
关键词 阳极功能层 极化阻抗 电性能 长期稳定性 Anode functional layer, Polarization resistance, Electrochemical performance~ Long-term stability
  • 相关文献

参考文献2

二级参考文献15

  • 1王凤华,郭瑞松,魏楸桐.SOFC阳极用NiO-YSZ粉末的制备技术[J].硅酸盐通报,2004,23(3):81-84. 被引量:5
  • 2M.B.Ricoult.SOFC-A playground for solid state chemistry[J]. Solid State Sci., 2008, 10(6): 670-688.
  • 3H.P.Xu,L.Kong,X.H.Wen. Fuel cell powersystem and high power DC-DC converter[J].Power Electron. ,2004,19(5): 1250-1255.
  • 4B.C.H.Steele,A.Helnzel. Materials for fuel cell technologies[J].Nature,2001,414:345 352.
  • 5Y. Jiang, S. Z. Wang, Y. H, Zhang, et al. Electrochemical reduction of oxygen on a strontium doped lanthanum manganite electrode[J].Solid State lonics, 1998, i 10: I I l- i 19.
  • 6Z.H.Wang,C.Xu,Z.L.Lou,et al. Preparation and characterization of silver-modified Lao.sSr0.EMnO3 cathode powders for solid oxide fuel ceils by chemical reduction method. Int. J. Hydrogen. Energy, 2013, 38(2): 1074-i 081.
  • 7M. Mogensen, K. V. Jensen,M. J. Jrgensen,et al. Progress in understanding SOFC electrodes.Solid State Ionics,2002, 150(1-2): 123-129.
  • 8A.Aguadero,L.Fawcett,S.Taub,et al.Materials development for intermediate-temperature solid oxide electrochemical devices[J]. J. Mater. Sci. 2012,47(9): 3925-3948.
  • 9Q. J. Zhou, T. M. He, Y. Ji. SmBa Coa05+x double-perovskite structure cathode material for intermediate temperaturesolid oxide fuel cells[J]. J. Power Sources, 2008,185 : 754- 758.
  • 10F.F.Dong,Y.B.Chen,R.Ran,et al. BaNbo.oFeo.9503 as a new oxygen reduction electrocatalyst for intermediate temperature solid oxide fuel cells[J]. J. Mater. Chem. A, 2013, 1(34):9781 9791.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部