期刊文献+

采用GPU加速的压缩感知图像恢复算法 被引量:1

Accelerate Compression Sensing Reconstruction Algorithms Using GPU
下载PDF
导出
摘要 压缩感知(Compressed Sensing,CS)的信号重构部分需要进行大数据量的计算,然而传统的CPU对大量的矢量计算并没有优势.为了解决这一问题,我们以CUDA作为并行计算架构,通过GPU-CPU并行编程技术,实现了三种快速高效的压缩感知图像恢复算法,包括正交匹配追踪OMP算法、两步阈值迭代TwIST算法和线性Bregman算法. The signal reconstruction in compressive sensing (CS) requires a large amount of data processing. However the traditional CPU has no advantage on vector calculation. To deal with this issue, we design a parallel computing architecture using CUDA. Based on GPU-CPU parallel programming technology, and we realize three fast and efficient CS image reconstruction algorithms, including OMP, TWIST, and linear Bregman algorithm.
出处 《微电子学与计算机》 CSCD 北大核心 2016年第12期125-129,共5页 Microelectronics & Computer
基金 国家自然科学基金(61307200) 国防科技重点实验室基金(9140C380503140C38177)
关键词 压缩感知 CUDA GPU 正交匹配追踪OMP算法 两步阈值迭代TwIST算法 线性Bregman算法 compressed sensing CUDA GPU OMP TWIST linear Bregman algorithm
  • 相关文献

参考文献2

二级参考文献92

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2覃凤清.数字图像压缩综述[J].宜宾学院学报,2006,6(6):88-90. 被引量:13
  • 3R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 4Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 5Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 6E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 7E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 8Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 9G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 10V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.

共引文献714

同被引文献8

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部