期刊文献+

一致可微T函数性质研究

On the Properties of T-functions with Uniform Differentiability
下载PDF
导出
摘要 本文结合传统T函数理论与非阿基米德T函数理论,深入研究T函数的性质特点,重点讨论一致可微T函数的单圈性及最高位序列的保熵性.首次利用参数的概念建立传统T函数理论中单字T函数单圈性判定条件与非阿基米德T函数理论中单圈性判定条件的联系,说明了两类判定条件的适用范围.定义了对T函数生成序列进行压缩变换的保熵性概念,讨论了一致可微T函数最高位序列的保熵性,说明了一致可微的T函数保熵性具有传递性,给出了T函数最高位序列保熵性的判定条件. Combining conventional theory with non-Archimedean theory, we study the properties of T-functions. We focus on the criteria of single cycle T-functions and entropy preservability of the most significant bit output sequence genera- ted by T-functions. Utilizing the parameters, the connection between criteria of single cycle T-functions in two different theo- ries is established. The situation each criterion is suited for is cleared. On the other hand, we define the notion of entropy pre- servability of T-functions. We talk about the entropy preservability of most significant bit output sequences generated by T- functions with uniform differentiability. We present the condition for entropy preservability of most significant bit output se- auences and show the transitivity.
出处 《电子学报》 EI CAS CSCD 北大核心 2016年第11期2676-2681,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.61272041 No.61502532)
关键词 T函数 一致可微 参数 保熵性 T-functions uniform differentiability parameter entropy preservability
  • 相关文献

参考文献1

二级参考文献11

  • 1COURTOIS N, MEIER W. Algebraic attacks on stream ciphers with linear feedback[A]. Cryptology- EUROCRYPT 2003[C]. Warsaw, Poland,2003.345-359.
  • 2SIEGENTHALER T. Decrypting a class of stream ciphers using ciphertext only[J]. IEEE Transactions on Computers, 1985, C-34(1): 81-85.
  • 3MEIER W, STAFFELBACH O. Fast correlation attacks on certain stream ciphers[J]. Journal of Cryptology, 1989, 1(3): 159-176.
  • 4KLIMOV A, SHAMIR A. A new class of invertible mappings[A]. Workshop on Cryptographic Hardware and Embedded Systems-CHES 2002[C]. Redwood Shores, CA, USA, 2003. 470-483.
  • 5KLAPPER A, GORESKY M. 2-adic shift registers[A]. Fast Software Encryption-FSE I 993[C]. Cambridge, UK, 1993. 174-178.
  • 6KLAPPER A, GORESKY M. Cryptanalysis based on 2-adic rational approximation[A]. Cryptology-CRYPTO 1995[C]. Santa Barbara, California, USA, 1995.262-273.
  • 7KLIMOV A, SHAM1R A. Cryptographic applications ofT-ftmctions[A]. Workshop on Selected Areas in Cryptography-SAC 2003[C]. Ottawa, Canada, 2004. 248-261.
  • 8ZHANG W Y, WU C-K. The algebraic normal form, linear complexity and k-error linear complexity of single-cycle T-ftmction[A]. Sequences and Their Applications-SETA 2006[C]. Beijing, China, 2006. 391-401.
  • 9KLIMOV A, SHAMIR A. New cryptographic primitives based on multiword T-ftmctions[AJ. Fast Software Encryption-FSE 2004[C]. Delhi, India, 2004.1-15.
  • 10KLIMOV A, SHAMIR A. New applications of T-ftmctions in block ciphers and hash ftmctions[A]. Fast Software Encryption-FSE 2005[C]. Paris, France, 2005. 18-31.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部