期刊文献+

半群M_n的主因子的极大正则子半群

Maximal Regular Subsemigroups of Principal Factors of Semigroup M_n
原文传递
导出
摘要 设Sing_n是[n]上的奇异变换半群,得了变换半群M_n={α∈Sing_n:max{|xα^(-1)}≥|im(α)|(x∈im{α))}的主因子的极大正则子半群的完全分类. Let Singn be the semigroup of all singular selfmaps on[n],let Mn = {α∈Singn:max{|xα^-1|} ≥ |im(α)|(■x ∈ im(α))}.The classification completely of the maximal regular subsemigroups of principal factors of semigroup Mn were completely obtained.
作者 易林 游泰杰 赵平 YI Lin YOU Tai-jie ZHAO Ping(School of Mathematics Science, Guizhou Normal University, Guiyang 550025, Chin)
出处 《数学的实践与认识》 北大核心 2016年第22期259-264,共6页 Mathematics in Practice and Theory
基金 国家自然科学基金(11461014)
关键词 变换半群 极大正则子半群 主因子 transformation semigroup maximal regular subsemigroup principal factors
  • 相关文献

参考文献1

二级参考文献11

  • 1Dénes, J.: On Transformations, Transformation semigroups and Graphs, Theory of Graphs. Proe. Colloq.Tihany, 65-75 (1966).
  • 2Bayramov, P. A.: On the problem of completeness in a symmetric semigroup of finite degree (in Russian).Diskret Analiz, 8, 3-27 (1966). MR 34, 7682.
  • 3Liebeck,M. W, Praeger, C. E., Saxl, J.: A classification of the maximal subgroups of the finite alternating and symmetric groups. J. Algebra, 111,365-383 (1987).
  • 4Todorov, K., Kracolova, L.: On the maximal subsemigroups of the ideals of finite symmetric semigroups.Simon Stevin, 59(2), 129-140 (1985).
  • 5Yang, X. L.: Maximal subsemigroups of finite singular transformation semigroups. Communications in Aloebra, 29(3), 1175-1182 (2001).
  • 6Yang, X. L.: A classification of maximal inverse subsemigroups of the finite symmetric inverse semigroups.Communications in Algebra, 2T(8), 4089-4096 (1999).
  • 7Howie, J. M.: An introduction to semigroup theory, Academic Press, London, 1976.
  • 8Tetrad, S.: Unsolved problems in semigroup theory (in Russian). Sverdlovsk, 1969; (Engl. Transl., Semiqroup Forum, 4 , 274-280 (1972)). MR 42, 7807.
  • 9Fountain, J. M.: Abundant semigroups. Proc. London Math. Soc. (3), 44, 103-129 (1982).
  • 10Evseev,A. E,Podronl N,E.Semigroups of transformations generated by idempotents of given defect, lzv.Vyssh. Uchebn. Zaved. Mat., 2(117), 44-50 (1972).

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部