摘要
随着大数据的发展和城市化进程的推进,城市交通路况预测成为智慧城市的焦点课题。而目前已有的实时路况预测模型由于软硬件的不足而不能进行准确高效的预测。文章利用真实的城市交通大数据,基于Spark分布式内存计算框架,提出了一种高效的实时路况预测方法,其中实时路况用路段的平均速度体现。首先并行地对大量车辆的全球定位系统数据进行水平时间窗口和垂直时间窗口切片抽样,然后利用Spark计算估测历史样本在各个时间段内历史平均速度的概率分布,最后采用贝叶斯最大后验估计基于新到的样本对未来的路况进行预测。实验结果表明,文章提出的方法可实现高效准确的实时路况预测。
With the advance of urbanization and development of big data, urban traffi c forecast has become an essential issue for the Smart City. Many existing traffic prediction models do not fulfill the real-time performance goal in terms of effi ciency and accuracy due to the limitation of hardware and software. A highly efficient real-time traffic prediction method using the Spark distributed in-memory computing framework was proposed in this paper. In this method, we estimate the average speed of vehicles on each road segment, which refl ects the real-time traffi c condition. The method works in three steps. Firstly, we perform horizontal and vertical windowed sampling on historical GPS data. Secondly, we use Spark to compute the probability distribution of average speed over each time window. Thirdly, we use Bayesian maximum-a-posteriori estimation to adjust the speed estimate of latest period of time. Experimental results demonstrate that the proposed method can be used for implementing effi cient and accurate urban traffi c prediction in real time.
作者
程敏
张珣
白童心
须成忠
CHENG Min ZHANG Xun BAI Tongxin XU Chengzhong(Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China Xi' an Jiaotong University, Xi' an 710049, China)
出处
《集成技术》
2016年第6期62-70,共9页
Journal of Integration Technology
基金
广东省自然基金项目(2014A030313687)