摘要
本文研究了容有半对称度量联络的广义复空间中的子流形上的Chen-Ricci不等式.利用代数技巧,建立了子流形上的Chen-Ricci不等式.这些不等式给出了子流形的外在几何量-关于半对称联络的平均曲率与内在几何量-Ricci曲率及k-Ricci曲率之间的关系,推广了Mihai和?zgür的一些结果.
In this paper,we study Chen-Ricci inequalities for submanifolds of generalized complex space forms endowed with a semi-symmetric metric connection.By using algebraic techniques,we establish Chen-Ricci inequalities between the mean curvature associated with a semisymmetric metric connection and certain intrinsic invariants involving the Ricci curvature and k-Ricci curvature of submanifolds,which generalize some of Mihai and Ozgur's results.
作者
何国庆
HE Guo-qing(School of Mathematics and Computer Science, Anhui Normal University, Wuhu 231000, China)
出处
《数学杂志》
CSCD
北大核心
2016年第6期1133-1141,共9页
Journal of Mathematics
基金
Supported by the Foundation for Excellent Young Talents of Higher Education of Anhui Province(2011SQRL021ZD)